Totally real submanifolds in a quaternion space form
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 341-346
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove a theorem for $n$-dimensional totally real minimal submanifold immersed in quaternion space form.
In this paper, we prove a theorem for $n$-dimensional totally real minimal submanifold immersed in quaternion space form.
Classification : 53C28, 53C40, 53C56
Keywords: totally real submanifold; quaternion space form
@article{CMJ_2004_54_2_a6,
     author = {Bekta\c{s}, Mehmet},
     title = {Totally real submanifolds in a quaternion space form},
     journal = {Czechoslovak Mathematical Journal},
     pages = {341--346},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059255},
     zbl = {1080.53049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a6/}
}
TY  - JOUR
AU  - Bektaş, Mehmet
TI  - Totally real submanifolds in a quaternion space form
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 341
EP  - 346
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a6/
LA  - en
ID  - CMJ_2004_54_2_a6
ER  - 
%0 Journal Article
%A Bektaş, Mehmet
%T Totally real submanifolds in a quaternion space form
%J Czechoslovak Mathematical Journal
%D 2004
%P 341-346
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a6/
%G en
%F CMJ_2004_54_2_a6
Bektaş, Mehmet. Totally real submanifolds in a quaternion space form. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 341-346. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a6/

[1] M. Bektaş and M. Ergüt: Compact space-like submanifolds with parallel mean curvature vector of a Pseudo-Riemannian space. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 38 (1999), 17–24. | MR

[2] B. Y. Chen and K. Ogiue: On totally real submanifolds. Trans. Amer. Math. Soc. 193 (1974), 257–266. | DOI | MR

[3] B. Y. Chen and C. S. Houh: Totally real submanifolds of a quaternion projective space. Ann. Math. Pura Appl. 120 (1979), 185–199. | DOI | MR

[4] Y. B. Shen: Totally real minimal submanifolds in a quaternion projective space. Chinese Ann. Math. Ser.B 14 (1993), 297–306. | MR | Zbl

[5] S. S. Chern, M. Carmo and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, functional analysis and related fields. Proc. Conf. for M. Stone, Univ. Chicago, 1968. Vol III, Springer-Verlag, New York, 1970, pp. 59–75. | MR

[6] H. Sun: Totally real pseudo-umbilical submanifolds of a quaternion space form. Glasgow Math. J. 40 (1998), 109–115. | DOI | MR | Zbl

[7] L. Ximin: Totally real submanifolds in a complex projective space. Internat. J. Math. Math. Sci. 22 (1999), 205–208. | DOI | MR | Zbl

[8] L. Ximin: Totally real submanifolds in $HP^{m}(1)$ with isotropic second fundamental form. Saitama Math. J. 16 (1998), 23–29. | MR

[9] L. Ximin: Totally real minimal submanifolds in a quaternion projective space. Proc. Japan. Acad. Ser. A-Math. Sci. 72 (1996), 238–239. | DOI | MR | Zbl