Commuting Toeplitz operators on the pluriharmonic Bergman space
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 535-544
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that two Toeplitz operators acting on the pluriharmonic Bergman space with radial symbol and pluriharmonic symbol respectively commute only in an obvious case.
We prove that two Toeplitz operators acting on the pluriharmonic Bergman space with radial symbol and pluriharmonic symbol respectively commute only in an obvious case.
Classification : 31C10, 47B35
Keywords: Toeplitz operators; pluriharmonic Bergman space
@article{CMJ_2004_54_2_a22,
     author = {Lee, Young Joo},
     title = {Commuting {Toeplitz} operators on the pluriharmonic {Bergman} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {535--544},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059271},
     zbl = {1080.47028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a22/}
}
TY  - JOUR
AU  - Lee, Young Joo
TI  - Commuting Toeplitz operators on the pluriharmonic Bergman space
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 535
EP  - 544
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a22/
LA  - en
ID  - CMJ_2004_54_2_a22
ER  - 
%0 Journal Article
%A Lee, Young Joo
%T Commuting Toeplitz operators on the pluriharmonic Bergman space
%J Czechoslovak Mathematical Journal
%D 2004
%P 535-544
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a22/
%G en
%F CMJ_2004_54_2_a22
Lee, Young Joo. Commuting Toeplitz operators on the pluriharmonic Bergman space. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 535-544. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a22/

[1] A.  Brown and P. R.  Halmos: Algebraic properties of Toeplitz operators. J.  Reine Angew. Math. 213 (1963/64), 89–102. | MR

[2] B. R.  Choe and Y. J.  Lee: Commuting Toeplitz operators on the harmonic Bergman space. Michigan Math.  J. 46 (1999), 163–174. | DOI | MR

[3] B. R.  Choe and Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz operators. Illinois J.  Math. 37 (1993), 424–436. | DOI | MR

[4] . uković and N. V.  Rao: Mellin transform, monomial symbols, and commuting Toeplitz operators. J.  Funct. Anal. 154 (1998), 195–214. | DOI | MR

[5] Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz type operators. Bull. Austral. Math. Soc. 54 (1996), 67–77. | DOI | MR | Zbl

[6] Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces. Canad. Math. Bull. 41 (1998), 129–136. | DOI | MR | Zbl

[7] Y. J.  Lee and K.  Zhu: Some differential and integral equations with applications to Toeplitz operators. Integral Equation Operator Theory 44 (2002), 466–479. | DOI | MR

[8] S.  Ohno: Toeplitz and Hankel operators on harmonic Bergman spaces. Preprint.

[9] W.  Rudin: Function Theory in the Unit Ball of  $\mathbb{C}^n$. Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR

[10] D.  Zheng: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Amer. Math. Soc. 350 (1998), 1595–1618. | DOI | MR | Zbl