@article{CMJ_2004_54_2_a22,
author = {Lee, Young Joo},
title = {Commuting {Toeplitz} operators on the pluriharmonic {Bergman} space},
journal = {Czechoslovak Mathematical Journal},
pages = {535--544},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059271},
zbl = {1080.47028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a22/}
}
Lee, Young Joo. Commuting Toeplitz operators on the pluriharmonic Bergman space. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 535-544. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a22/
[1] A. Brown and P. R. Halmos: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213 (1963/64), 89–102. | MR
[2] B. R. Choe and Y. J. Lee: Commuting Toeplitz operators on the harmonic Bergman space. Michigan Math. J. 46 (1999), 163–174. | DOI | MR
[3] B. R. Choe and Y. J. Lee: Pluriharmonic symbols of commuting Toeplitz operators. Illinois J. Math. 37 (1993), 424–436. | DOI | MR
[4] . uković and N. V. Rao: Mellin transform, monomial symbols, and commuting Toeplitz operators. J. Funct. Anal. 154 (1998), 195–214. | DOI | MR
[5] Y. J. Lee: Pluriharmonic symbols of commuting Toeplitz type operators. Bull. Austral. Math. Soc. 54 (1996), 67–77. | DOI | MR | Zbl
[6] Y. J. Lee: Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces. Canad. Math. Bull. 41 (1998), 129–136. | DOI | MR | Zbl
[7] Y. J. Lee and K. Zhu: Some differential and integral equations with applications to Toeplitz operators. Integral Equation Operator Theory 44 (2002), 466–479. | DOI | MR
[8] S. Ohno: Toeplitz and Hankel operators on harmonic Bergman spaces. Preprint.
[9] W. Rudin: Function Theory in the Unit Ball of $\mathbb{C}^n$. Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR
[10] D. Zheng: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Amer. Math. Soc. 350 (1998), 1595–1618. | DOI | MR | Zbl