Keywords: lattice ordered group; interpolation rule; radical class
@article{CMJ_2004_54_2_a20,
author = {Jakub{\'\i}k, J\'an},
title = {On some interpolation rules for lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {499--507},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059269},
zbl = {1080.06028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a20/}
}
Jakubík, Ján. On some interpolation rules for lattice ordered groups. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 499-507. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a20/
[1] P. F. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[2] P. F. Conrad: $K$-radical classes of lattice ordered groups. In: Proc. Conf. Carbondale (1980), Lecture Notes Math. Vol. 848, 1981, pp. 186–207. | MR | Zbl
[3] M. R. Darnel: $\sigma $-interpolation lattice-ordered groups. Czechoslovak Math. J. 50 (2000), 1–2. | DOI | MR | Zbl
[4] M. R. Darnel and J. Martinez: Radical classes of lattice ordered groups vs. classes of compact spaces. Order 19 (2002), 35–72. | DOI | MR
[5] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, No. 20. Amer. Math. Soc., Providence, 1986. | MR
[6] Ch. W. Holland: Varieties of $\ell $-groups are torsion classes. Czechoslovak Math. J. 29 (1979), 11–12. | MR
[7] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21 (1977), 451–477. | MR
[8] J. Jakubík: On some completeness properties for lattice ordered groups. Czechoslovak Math. J. 45 (1995), 253–266. | MR
[9] N. Ja. Medvedev: On the lattice of radicals of a finitely generated $\ell $-group. Math. Slovaca 33 (1983), 185–188. (Russian) | MR
[10] R. C. Walker: The Stone-Čech Compactification. Ergebn. Math. 80. Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR