We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^{\mathbb{N}}$ where $D$ is a discrete space with $\mathop {\mathrm card}(D)=\mathop {\mathrm dens}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop {\mathrm dens}(E)= \mathop {\mathrm dens}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb{K}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb{K}^{\mathbb{N}}$.
We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^{\mathbb{N}}$ where $D$ is a discrete space with $\mathop {\mathrm card}(D)=\mathop {\mathrm dens}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop {\mathrm dens}(E)= \mathop {\mathrm dens}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb{K}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb{K}^{\mathbb{N}}$.
@article{CMJ_2004_54_2_a17,
author = {\'Sliwa, Wies{\l}aw},
title = {On topological classification of non-archimedean {Fr\'echet} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {457--463},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059266},
zbl = {1080.46525},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a17/}
}
TY - JOUR
AU - Śliwa, Wiesław
TI - On topological classification of non-archimedean Fréchet spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
SP - 457
EP - 463
VL - 54
IS - 2
UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a17/
LA - en
ID - CMJ_2004_54_2_a17
ER -
Śliwa, Wiesław. On topological classification of non-archimedean Fréchet spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 457-463. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a17/
[1] L. E. J. Brouver: On the structure of perfect sets of points. Proc. Acad. Amsterdam 12 (1910), 785–794.
[2] J. Kąkol, C. Perez-Garcia and W. Schikhof: Cardinality and Mackey topologies of non-Archimedean Banach and Fréchet spaces. Bull. Polish Acad. Sci. Math. 44 (1996), 131–141. | MR
[3] J. B. Prolla: Topics in Functional Analysis over Valued Division Rings. North-Holland Math. Studies 77, North-Holland Publ. Co., Amsterdam, 1982. | MR | Zbl
[4] A. C. M. van Rooij: Notes on $p$-adic Banach spaces. Report 7633, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, The Netherlands, 1976, pp. 1–62.
[5] A C. M. van Rooij: Non-Archimedean Functional Analysis. Marcel Dekker, New York, 1978. | MR | Zbl
[6] W. H. Schikhof: Locally convex spaces over non-spherically complete valued fields. Bull. Soc. Math. Belgique 38 (1986), 187–207. | MR
[7] W. Śliwa: Examples of non-archimedean nuclear Fréchet spaces without a Schauder basis. Indag. Math. (N.S.) 11 (2000), 607–616. | DOI | MR