On properties of a graph that depend on its distance function
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 445-456
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If $G$ is a connected graph with distance function $d$, then by a step in $G$ is meant an ordered triple $(u, x, v)$ of vertices of $G$ such that $d(u, x) = 1$ and $d(u, v) = d(x, v) + 1$. A characterization of the set of all steps in a connected graph was published by the present author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization is presented. A stronger result for a certain type of connected graphs is proved in Section 2.
If $G$ is a connected graph with distance function $d$, then by a step in $G$ is meant an ordered triple $(u, x, v)$ of vertices of $G$ such that $d(u, x) = 1$ and $d(u, v) = d(x, v) + 1$. A characterization of the set of all steps in a connected graph was published by the present author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization is presented. A stronger result for a certain type of connected graphs is proved in Section 2.
Classification : 05C12, 05C75
Keywords: connected graphs; distance; steps; geodetically smooth graphs
@article{CMJ_2004_54_2_a16,
     author = {Nebesk\'y, Ladislav},
     title = {On properties of a graph that depend on its distance function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--456},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059265},
     zbl = {1080.05506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a16/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - On properties of a graph that depend on its distance function
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 445
EP  - 456
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a16/
LA  - en
ID  - CMJ_2004_54_2_a16
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T On properties of a graph that depend on its distance function
%J Czechoslovak Mathematical Journal
%D 2004
%P 445-456
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a16/
%G en
%F CMJ_2004_54_2_a16
Nebeský, Ladislav. On properties of a graph that depend on its distance function. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 445-456. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a16/

[1] H.-J.  Bandelt and H. M.  Mulder: Pseudo-modular graphs. Discrete Math. 62 (1986), 245–260. | DOI | MR

[2] G.  Chartrand and L.  Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996. | MR

[3] S.  Klavžar and H. M.  Mulder: Median graphs: characterizations, location theory and related structures. J.  Combin. Math. Combin. Comput. 30 (1999), 103–127. | MR

[4] H. M.  Mulder: The interval function of a graph. Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980. | MR | Zbl

[5] H.  M.  Mulder and L.  Nebeský: Modular and median signpost systems and their underlying graphs. Discuss. Math. Graph Theory 23 (2003), 309–32444. | DOI | MR

[6] L.  Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math.  J. 47 (122) (1997), 149–161. | DOI | MR

[7] L.  Nebeský: An axiomatic approach to metric properties of connected graphs. Czechoslovak Math.  J. 50 (125) (2000), 3–14. | DOI | MR

[8] L.  Nebeský: A theorem for an axiomatic approach to metric properties of graphs. Czechoslovak Math.  J. 50 (125) (2000), 121–133. | DOI | MR

[9] L.  Nebeský: A tree as a finite nonempty set with a binary operation. Math. Bohem. 125 (2000), 455–458. | MR