Keywords: connected graphs; distance; steps; geodetically smooth graphs
@article{CMJ_2004_54_2_a16,
author = {Nebesk\'y, Ladislav},
title = {On properties of a graph that depend on its distance function},
journal = {Czechoslovak Mathematical Journal},
pages = {445--456},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059265},
zbl = {1080.05506},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a16/}
}
Nebeský, Ladislav. On properties of a graph that depend on its distance function. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 445-456. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a16/
[1] H.-J. Bandelt and H. M. Mulder: Pseudo-modular graphs. Discrete Math. 62 (1986), 245–260. | DOI | MR
[2] G. Chartrand and L. Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996. | MR
[3] S. Klavžar and H. M. Mulder: Median graphs: characterizations, location theory and related structures. J. Combin. Math. Combin. Comput. 30 (1999), 103–127. | MR
[4] H. M. Mulder: The interval function of a graph. Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980. | MR | Zbl
[5] H. M. Mulder and L. Nebeský: Modular and median signpost systems and their underlying graphs. Discuss. Math. Graph Theory 23 (2003), 309–32444. | DOI | MR
[6] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47 (122) (1997), 149–161. | DOI | MR
[7] L. Nebeský: An axiomatic approach to metric properties of connected graphs. Czechoslovak Math. J. 50 (125) (2000), 3–14. | DOI | MR
[8] L. Nebeský: A theorem for an axiomatic approach to metric properties of graphs. Czechoslovak Math. J. 50 (125) (2000), 121–133. | DOI | MR
[9] L. Nebeský: A tree as a finite nonempty set with a binary operation. Math. Bohem. 125 (2000), 455–458. | MR