$\mu$-statistically convergent function sequences
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 413-422
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence.
In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence.
Classification : 40A30
Keywords: pointwise and uniform convergence; $\mu $-statistical convergence; convergence in $\mu $-density; finitely additive measure; additive property for null sets
@article{CMJ_2004_54_2_a13,
     author = {Duman, O. and Orhan, C.},
     title = {$\mu$-statistically convergent function sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {413--422},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059262},
     zbl = {1080.40501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a13/}
}
TY  - JOUR
AU  - Duman, O.
AU  - Orhan, C.
TI  - $\mu$-statistically convergent function sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 413
EP  - 422
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a13/
LA  - en
ID  - CMJ_2004_54_2_a13
ER  - 
%0 Journal Article
%A Duman, O.
%A Orhan, C.
%T $\mu$-statistically convergent function sequences
%J Czechoslovak Mathematical Journal
%D 2004
%P 413-422
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a13/
%G en
%F CMJ_2004_54_2_a13
Duman, O.; Orhan, C. $\mu$-statistically convergent function sequences. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 413-422. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a13/

[1] R. G.  Bartle: Elements of Real Analysis. John Wiley & Sons, Inc., New York, 1964. | MR

[2] J.  Connor: The statistical and strong $p$-Cesàro convergence of sequences. Analysis 8 (1988), 47–63. | DOI | MR | Zbl

[3] J.  Connor: Two valued measures and summability. Analysis 10 (1990), 373–385. | DOI | MR | Zbl

[4] J.  Connor: $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence. Proc. Amer. Math. Soc. 115 (1992), 319–327. | MR | Zbl

[5] J.  Connor and M. A.  Swardson: Strong integral summability and the Stone-Čech compactification of the half-line. Pacific J.  Math. 157 (1993), 201–224. | DOI | MR

[6] J.  Connor: A topological and functional analytic approach to statistical convergence. Analysis of Divergence, Birkhäuser-Verlag, Boston, 1999, pp. 403–413. | MR | Zbl

[7] J.  Connor and J.  Kline: On statistical limit points and the consistency of statistical convergence. J.  Math. Anal. Appl. 197 (1996), 393–399. | DOI | MR

[8] J.  Connor, M.  Ganichev and V.  Kadets: A characterization of Banach spaces with separable duals via weak statistical convergence. J.  Math. Anal. Appl. 244 (2000), 251–261. | DOI | MR

[9] K.  Demirci and C.  Orhan: Bounded multipliers of bounded $A$-statistically convergent sequences. J.  Math. Anal. Appl. 235 (1999), 122–129. | DOI | MR

[10] H.  Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244. | DOI | MR | Zbl

[11] J. A.  Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | DOI | MR | Zbl

[12] J. A.  Fridy and C.  Orhan: Lacunary statistical convergence. Pacific J.  Math. 160 (1993), 43–51. | DOI | MR

[13] J. A.  Fridy and C.  Orhan: Lacunary statistical summability. J.  Math. Anal. Appl. 173 (1993), 497–503. | DOI | MR

[14] J. A.  Fridy and M. K.  Khan: Tauberian theorems via statistical convergence. J.  Math. Anal. Appl. 228 (1998), 73–95. | DOI | MR

[15] E.  Kolk: Convergence-preserving function sequences and uniform convergence. J.  Math. Anal. Appl. 238 (1999), 599–603. | DOI | MR | Zbl

[16] I. J.  Maddox: Statistical convergence in a locally convex space. Math. Proc. Cambridge Phil. Soc. 104 (1988), 141–145. | DOI | MR | Zbl

[17] H. I.  Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819. | DOI | MR | Zbl

[18] T.  Šálat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. | MR

[19] H.  Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73–74.

[20] W.  Wilczyński: Statistical convergence of sequences of functions. Real Anal. Exchange 25 (2000), 49–50. | DOI

[21] A.  Zygmund: Trigonometric Series. Second edition. Cambridge Univ. Press, Cambridge, 1979.