Keywords: pointwise and uniform convergence; $\mu $-statistical convergence; convergence in $\mu $-density; finitely additive measure; additive property for null sets
@article{CMJ_2004_54_2_a13,
author = {Duman, O. and Orhan, C.},
title = {$\mu$-statistically convergent function sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {413--422},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059262},
zbl = {1080.40501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a13/}
}
Duman, O.; Orhan, C. $\mu$-statistically convergent function sequences. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 413-422. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a13/
[1] R. G. Bartle: Elements of Real Analysis. John Wiley & Sons, Inc., New York, 1964. | MR
[2] J. Connor: The statistical and strong $p$-Cesàro convergence of sequences. Analysis 8 (1988), 47–63. | DOI | MR | Zbl
[3] J. Connor: Two valued measures and summability. Analysis 10 (1990), 373–385. | DOI | MR | Zbl
[4] J. Connor: $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence. Proc. Amer. Math. Soc. 115 (1992), 319–327. | MR | Zbl
[5] J. Connor and M. A. Swardson: Strong integral summability and the Stone-Čech compactification of the half-line. Pacific J. Math. 157 (1993), 201–224. | DOI | MR
[6] J. Connor: A topological and functional analytic approach to statistical convergence. Analysis of Divergence, Birkhäuser-Verlag, Boston, 1999, pp. 403–413. | MR | Zbl
[7] J. Connor and J. Kline: On statistical limit points and the consistency of statistical convergence. J. Math. Anal. Appl. 197 (1996), 393–399. | DOI | MR
[8] J. Connor, M. Ganichev and V. Kadets: A characterization of Banach spaces with separable duals via weak statistical convergence. J. Math. Anal. Appl. 244 (2000), 251–261. | DOI | MR
[9] K. Demirci and C. Orhan: Bounded multipliers of bounded $A$-statistically convergent sequences. J. Math. Anal. Appl. 235 (1999), 122–129. | DOI | MR
[10] H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244. | DOI | MR | Zbl
[11] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | DOI | MR | Zbl
[12] J. A. Fridy and C. Orhan: Lacunary statistical convergence. Pacific J. Math. 160 (1993), 43–51. | DOI | MR
[13] J. A. Fridy and C. Orhan: Lacunary statistical summability. J. Math. Anal. Appl. 173 (1993), 497–503. | DOI | MR
[14] J. A. Fridy and M. K. Khan: Tauberian theorems via statistical convergence. J. Math. Anal. Appl. 228 (1998), 73–95. | DOI | MR
[15] E. Kolk: Convergence-preserving function sequences and uniform convergence. J. Math. Anal. Appl. 238 (1999), 599–603. | DOI | MR | Zbl
[16] I. J. Maddox: Statistical convergence in a locally convex space. Math. Proc. Cambridge Phil. Soc. 104 (1988), 141–145. | DOI | MR | Zbl
[17] H. I. Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819. | DOI | MR | Zbl
[18] T. Šálat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. | MR
[19] H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73–74.
[20] W. Wilczyński: Statistical convergence of sequences of functions. Real Anal. Exchange 25 (2000), 49–50. | DOI
[21] A. Zygmund: Trigonometric Series. Second edition. Cambridge Univ. Press, Cambridge, 1979.