Keywords: tolerance simple and tolerance-trivial lattices; locally order-polynomially complete lattices
@article{CMJ_2004_54_2_a12,
author = {Radeleczki, S. and Schweigert, D.},
title = {Lattices with complemented tolerance lattice},
journal = {Czechoslovak Mathematical Journal},
pages = {407--412},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059261},
zbl = {1080.06006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a12/}
}
Radeleczki, S.; Schweigert, D. Lattices with complemented tolerance lattice. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 407-412. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a12/
[1] H.-J. Bandelt: Tolerance relations on lattices. Bull. Austral. Math. Soc. 23 (1981), 367–381. | DOI | MR | Zbl
[2] I. Chajda: Algebraic Theory of Tolerance Relations. Univerzita Palackého Olomouc, Olomouc, 1991. | Zbl
[3] I. Chajda and J. Nieminen: Direct decomposability of tolerances on lattices, semilattices and quasilattices. Czechoslovak Math. J. 32 (1982), 110–115. | MR
[4] I. Chajda, J. Niederle and B. Zelinka: On existence conditions for compatible tolerances. Czechoslovak Math. J. 26 (1976), 304–311. | MR
[5] P. Crawley: Lattices whose congruences form a Boolean algebra. Pacific J. Math. 10 (1960), 787–795. | DOI | MR | Zbl
[6] R. P. Dilworth: The structure of relatively complemented lattices. Ann. Math. 51 (1950), 348–359. | DOI | MR | Zbl
[7] G. Grätzer: General Lattice Theory, Second edition. Birkhäuser-Verlag, Basel-Stuttgart, 1991. | MR
[8] G. Grätzer and E. T. Schmidt: Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hungar. 9 (1958), 137–175. | DOI | MR
[9] Z. Heleyova: Tolerances on semilattices. Math. Pannon. 9 (1998), 111–119. | MR | Zbl
[10] K. Kaarli and K. Täht: Strictly locally order affine complete lattices. Order 10 (1993), 261–270. | DOI | MR
[11] T. Katriňák and S. El-Assar: Algebras with Boolean and Stonean congruence lattices. Acta Math. Hungar. 48 (1986), 301–316. | DOI | MR
[12] J. Niederle: A note on tolerance lattices. Čas. pěst. Mat. 107 (1982), 221–224. | MR | Zbl
[13] S. Radeleczki: A note on the tolerance lattice of atomistic algebraic lattices. Math. Pann. 13 (2002), 183–190. | MR | Zbl
[14] J. G. Raftery, I. G. Rosenberg and T. Sturm: Tolerance relations and BCK algebras. Math. Japon. 36 (1991), 399–410. | MR
[15] I. G. Rosenberg and D. Schweigert: Compatible orderings and tolerances of lattices. Ann. Discrete Math. 23 (1984), 119–150. | MR
[16] E. T. Schmidt: On locally order-polynomially complete modular lattices. Acta Math. Hungar. 49 (1987), 481–486. | DOI | MR | Zbl
[17] D. Schweigert: Compatible relations of modular and orthomodular lattices. Proc. Amer. Math. Soc. 81 (1981), 462–464. | DOI | MR | Zbl
[18] D. Schweigert: Über endliche ordnungspolynomvollständige Verbände. Monatsh. Math. 78 (1974), 68–76. | DOI | MR | Zbl
[19] M. Stern: Semimodular Lattices, Theory and Applications. Cambridge University Press, Cambridge-New York-Melbourne, 1999. | MR | Zbl
[20] G. Szász: Einführung in die Verbändstheorie. Akadémiai Kiadó, Budapest, 1962. | MR
[21] T. Tanaka: Canonical subdirect factorization of lattices. J. Sci. Hiroshima Univ., Ser. A 16 (1952), 239–246. | DOI | MR