@article{CMJ_2004_54_2_a11,
author = {Poon, Kin-Keung},
title = {On {Harpers{\textquoteright}} result concerning the bandwidths of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {401--405},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059260},
zbl = {1080.05530},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a11/}
}
Poon, Kin-Keung. On Harpers’ result concerning the bandwidths of graphs. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 401-405. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a11/
[1] J. A. Bondy and U. S. R. Murty: Graph Theory with Applications. Macmillan, 1976. | MR
[2] P. Z. Chinn, J. Chvátalová, A. K. Dewdney and N. E. Gibbs: The bandwidth problem for graphs and matrices—a survey. J. Graph Theory 6 (1982), 223–254. | DOI | MR
[3] J. Chvátalová and J. Opatrný: The bandwidth problem and operations on graphs. Discrete Math. 61 (1986), 141–150. | DOI | MR
[4] F. R. K. Chung: Labelings of Graphs, Selected Topics in Graph Theory, III. L. Beineke, R. Wilson (eds.), Academic Press, New York, 1988, pp. 151–168. | MR
[5] M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth: Complexity results for bandwidth minimization. SIAM J. Appl. Math. 34 (1978), 477–495. | DOI | MR
[6] F. Harary: Problem 16. Theory of Graphs and its Applications. Proc. Symp., Smolenice, M. Fiedler (ed.), Czechoslovak Academy of Sciences, Prague, 1964. | MR
[7] L. H. Harper: Optimal numberings and isoperimetric problems on graphs. J. Combin. Theory 1 (1966), 385–393. | DOI | MR | Zbl
[8] D. J. Kleitman and R. V. Vohra: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3 (1990), 373–375. | DOI | MR
[9] R. R. Korfhage: Numberings of the vertices of graphs. Computer Science Department Technical Report 5, Purdue University, Lafayette, 1966.
[10] Peter C. B. Lam, W. C. Shiu and Y. Lin: Duality in the bandwidth problems. Congressus Numerantium 124 (1997), 117–127. | MR
[11] M. M. Syslo and J. Zak: The bandwidth problem: Critical subgraphs and the solution for caterpillars. Ann. Discrete Math. 16 (1982), 281–286. | MR