Keywords: pseudo-solution; Pettis integral; Henstock-Kurzweil integral; Cauchy problem
@article{CMJ_2004_54_2_a1,
author = {Cicho\'n, M. and Kubiaczyk, I. and Sikorska, A.},
title = {The {Henstock-Kurzweil-Pettis} integrals and existence theorems for the {Cauchy} problem},
journal = {Czechoslovak Mathematical Journal},
pages = {279--289},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059250},
zbl = {1080.34550},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/}
}
TY - JOUR AU - Cichoń, M. AU - Kubiaczyk, I. AU - Sikorska, A. TI - The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem JO - Czechoslovak Mathematical Journal PY - 2004 SP - 279 EP - 289 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/ LA - en ID - CMJ_2004_54_2_a1 ER -
Cichoń, M.; Kubiaczyk, I.; Sikorska, A. The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 279-289. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/
[1] Z. Artstein: Topological dynamics of ordinary differential equations and Kurzweil equations. J. Differential Equations 23 (1977), 224–243. | DOI | MR | Zbl
[2] J. M. Ball: Weak continuity properties of mappings and semi-groups. Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275–280. | MR
[3] J. Banaś: Demicontinuity and weak sequential continuity of operators in the Lebesgue space. In: Proceedings of the 1st Polish Symposium on Nonlinear Analysis, Łódź, 1997, pp. 124–129.
[4] J. Banaś and K. Goebel: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Appl. Math. Vol 60. Marcel Dekker, New York-Basel, 1980. | MR
[5] F. S. DeBlasi: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262. | MR
[6] S. S. Cao: The Henstock integral for Banach valued functions. SEA Bull. Math. 16 (1992), 35–40. | MR | Zbl
[7] V. G. Celidze and A. G. Dzvarsheishvili: Theory of Denjoy Integral and Some of Its Applications. Tbilisi, 1987. (Russian)
[8] T. S. Chew: On Kurzweil generalized ordinary differential equations. J. Differential Equations 76 (1988), 286–293. | DOI | MR | Zbl
[9] T. S. Chew and F. Flordelija: On $x^{\prime }= f(t, x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. | MR
[10] M. Cichoń: Weak solutions of differential equations in Banach spaces. Discuss. Math. Diff. Inclusions 15 (1995), 5–14.
[11] M. Cichoń and I. Kubiaczyk: On the set of solutions of the Cauchy problem in Banach spaces. Arch. Math. 63 (1994), 251–257. | DOI | MR
[12] M. Cichoń: Convergence theorems for the Henstock-Kurzweil-Pettis integral. Acta Math. Hungar. 92 (2001), 75–82. | DOI | MR
[13] Wu Congxin, Li Baolin and F. S. Lee: Discontinuous systems and the Henstock-Kurzweil integral. J. Math. Anal. Appl. 229 (1999), 119–136. | DOI | MR
[14] J. Diestel and J. J. Uhl: Vector Measures. Math. Surveys, Vol. 15. Providence, Rhode Island, 1977. | MR
[15] R. F. Geitz: Pettis integration. Proc. Amer. Math. Soc. 82 (1981), 81–86. | DOI | MR | Zbl
[16] R. A. Gordon: The McShane integral of Banach-valued functions. Illinois J. Math. 34 (1990), 557–567. | DOI | MR | Zbl
[17] R. A. Gordon: The Integrals of Lebesgue. Denjoy, Perron and Henstock, Providence, Rhode Island, 1994. | MR | Zbl
[18] R. A. Gordon: Riemann integration in Banach spaces. Rocky Mountain J. Math. 21 (1991), 923–949. | DOI | MR | Zbl
[19] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Studia Math. 92 (1989), 73–91. | DOI | MR | Zbl
[20] R. Henstock: The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1991. | MR
[21] W. J. Knight: Solutions of differential equations in Banach spaces. Duke Math. J. 41 (1974), 437–442. | DOI | MR
[22] I. Kubiaczyk: On fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Diff. Inclusions 15 (1995), 15–20. | MR
[23] I. Kubiaczyk: On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Pol. Math. 33 (1985), 607–614. | MR | Zbl
[24] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418–449. | MR | Zbl
[25] J. Kurzweil: Nichtabsolut Konvergente Integrale. Teubner Texte zür Mathematik, Vol. 26. Leipzig, 1980. | MR
[26] A. R. Mitchell and Ch. Smith: An existence theorem for weak solutions of differential equations in Banach spaces. In: Nonlinear Equations in Abstract Spaces, V. Laksmikantham (ed.), 1978, pp. 387–404. | MR
[27] Lee Peng-Yee: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. | MR | Zbl
[28] D. O’Regan: Weak solutions of ordinary differential equations in Banach Spaces. Applied Mathematics Letters 12 (1999), 101–105. | DOI | MR
[29] B. J. Pettis: On integration in vector spaces. Trans. Amer. Math. Soc. 44 (1938), 277–304. | DOI | MR | Zbl