The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 279-289 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove an existence theorem for the Cauchy problem \[ x^{\prime }(t) = f(t, x(t)), \quad x(0) = x_0, \quad t \in I_{\alpha } = [0, \alpha ] \] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function $f$ are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function $f$ satisfies some conditions expressed in terms of measures of weak noncompactness.
In this paper we prove an existence theorem for the Cauchy problem \[ x^{\prime }(t) = f(t, x(t)), \quad x(0) = x_0, \quad t \in I_{\alpha } = [0, \alpha ] \] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function $f$ are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function $f$ satisfies some conditions expressed in terms of measures of weak noncompactness.
Classification : 28B05, 34G20
Keywords: pseudo-solution; Pettis integral; Henstock-Kurzweil integral; Cauchy problem
@article{CMJ_2004_54_2_a1,
     author = {Cicho\'n, M. and Kubiaczyk, I. and Sikorska, A.},
     title = {The {Henstock-Kurzweil-Pettis} integrals and existence theorems for the {Cauchy} problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {279--289},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059250},
     zbl = {1080.34550},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/}
}
TY  - JOUR
AU  - Cichoń, M.
AU  - Kubiaczyk, I.
AU  - Sikorska, A.
TI  - The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 279
EP  - 289
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/
LA  - en
ID  - CMJ_2004_54_2_a1
ER  - 
%0 Journal Article
%A Cichoń, M.
%A Kubiaczyk, I.
%A Sikorska, A.
%T The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem
%J Czechoslovak Mathematical Journal
%D 2004
%P 279-289
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/
%G en
%F CMJ_2004_54_2_a1
Cichoń, M.; Kubiaczyk, I.; Sikorska, A. The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 279-289. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a1/

[1] Z. Artstein: Topological dynamics of ordinary differential equations and Kurzweil equations. J.  Differential Equations 23 (1977), 224–243. | DOI | MR | Zbl

[2] J. M. Ball: Weak continuity properties of mappings and semi-groups. Proc. Royal Soc. Edinbourgh Sect.  A 72 (1979), 275–280. | MR

[3] J. Banaś: Demicontinuity and weak sequential continuity of operators in the Lebesgue space. In: Proceedings of the 1st Polish Symposium on Nonlinear Analysis, Łódź, 1997, pp. 124–129.

[4] J. Banaś and K. Goebel: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Appl. Math. Vol  60. Marcel Dekker, New York-Basel, 1980. | MR

[5] F. S. DeBlasi: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262. | MR

[6] S. S. Cao: The Henstock integral for Banach valued functions. SEA Bull. Math. 16 (1992), 35–40. | MR | Zbl

[7] V. G. Celidze and A. G. Dzvarsheishvili: Theory of Denjoy Integral and Some of Its Applications. Tbilisi, 1987. (Russian)

[8] T. S. Chew: On Kurzweil generalized ordinary differential equations. J.  Differential Equations 76 (1988), 286–293. | DOI | MR | Zbl

[9] T. S. Chew and F. Flordelija: On $x^{\prime }= f(t, x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. | MR

[10] M. Cichoń: Weak solutions of differential equations in Banach spaces. Discuss. Math. Diff. Inclusions 15 (1995), 5–14.

[11] M. Cichoń and I. Kubiaczyk: On the set of solutions of the Cauchy problem in Banach spaces. Arch. Math. 63 (1994), 251–257. | DOI | MR

[12] M. Cichoń: Convergence theorems for the Henstock-Kurzweil-Pettis integral. Acta Math. Hungar. 92 (2001), 75–82. | DOI | MR

[13] Wu Congxin, Li Baolin and F. S. Lee: Discontinuous systems and the Henstock-Kurzweil integral. J.  Math. Anal. Appl. 229 (1999), 119–136. | DOI | MR

[14] J. Diestel and J. J. Uhl: Vector Measures. Math. Surveys, Vol.  15. Providence, Rhode Island, 1977. | MR

[15] R. F. Geitz: Pettis integration. Proc. Amer. Math. Soc. 82 (1981), 81–86. | DOI | MR | Zbl

[16] R. A. Gordon: The McShane integral of Banach-valued functions. Illinois J.  Math. 34 (1990), 557–567. | DOI | MR | Zbl

[17] R. A. Gordon: The Integrals of Lebesgue. Denjoy, Perron and Henstock, Providence, Rhode Island, 1994. | MR | Zbl

[18] R. A. Gordon: Riemann integration in Banach spaces. Rocky Mountain J.  Math. 21 (1991), 923–949. | DOI | MR | Zbl

[19] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Studia Math. 92 (1989), 73–91. | DOI | MR | Zbl

[20] R. Henstock: The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1991. | MR

[21] W. J. Knight: Solutions of differential equations in Banach spaces. Duke Math.  J. 41 (1974), 437–442. | DOI | MR

[22] I. Kubiaczyk: On fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Diff. Inclusions 15 (1995), 15–20. | MR

[23] I. Kubiaczyk: On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Pol. Math. 33 (1985), 607–614. | MR | Zbl

[24] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math.  J. 7 (1957), 418–449. | MR | Zbl

[25] J. Kurzweil: Nichtabsolut Konvergente Integrale. Teubner Texte zür Mathematik, Vol.  26. Leipzig, 1980. | MR

[26] A. R. Mitchell and Ch. Smith: An existence theorem for weak solutions of differential equations in Banach spaces. In: Nonlinear Equations in Abstract Spaces, V. Laksmikantham (ed.), 1978, pp. 387–404. | MR

[27] Lee Peng-Yee: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. | MR | Zbl

[28] D. O’Regan: Weak solutions of ordinary differential equations in Banach Spaces. Applied Mathematics Letters 12 (1999), 101–105. | DOI | MR

[29] B. J. Pettis: On integration in vector spaces. Trans. Amer. Math. Soc. 44 (1938), 277–304. | DOI | MR | Zbl