An example of a positive semidefinite double sequence which is not a moment sequence
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 273-277 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The first explicit example of a positive semidefinite double sequence which is not a moment sequence was given by Friedrich. We present an example with a simpler definition and more moderate growth as $(m, n) \rightarrow \infty $.
The first explicit example of a positive semidefinite double sequence which is not a moment sequence was given by Friedrich. We present an example with a simpler definition and more moderate growth as $(m, n) \rightarrow \infty $.
Classification : 43A35, 44A60
Keywords: double sequence; positive definite; moment sequence
@article{CMJ_2004_54_2_a0,
     author = {Bisgaard, Torben Maack},
     title = {An example of a positive semidefinite double sequence which is not a moment sequence},
     journal = {Czechoslovak Mathematical Journal},
     pages = {273--277},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059249},
     zbl = {1080.43500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a0/}
}
TY  - JOUR
AU  - Bisgaard, Torben Maack
TI  - An example of a positive semidefinite double sequence which is not a moment sequence
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 273
EP  - 277
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a0/
LA  - en
ID  - CMJ_2004_54_2_a0
ER  - 
%0 Journal Article
%A Bisgaard, Torben Maack
%T An example of a positive semidefinite double sequence which is not a moment sequence
%J Czechoslovak Mathematical Journal
%D 2004
%P 273-277
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a0/
%G en
%F CMJ_2004_54_2_a0
Bisgaard, Torben Maack. An example of a positive semidefinite double sequence which is not a moment sequence. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 273-277. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a0/

[1] C. Berg, J. P. R. Christensen and C. U. Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. | DOI | MR

[2] C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984. | MR

[3] T. M. Bisgaard: On the growth of positive definite double sequences which are not moment sequences. Math. Nachr. 210 (2000), 67–83. | DOI | MR | Zbl

[4] T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math.  Z. 200 (1989), 511–525. | DOI | MR

[5] J. Friedrich: A note on the two-dimensional moment problem. Math. Nachr. 121 (1985), 285–286. | DOI | MR | Zbl

[6] H. L. Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblemes. Math. Ann. 81, 82 (1920, 1921), 235–319, 120–164, 168–187.

[7] Y. Nakamura and N.  Sakakibara: Perfectness of certain subsemigroups of a perfect semigroup. Math. Ann. 287 (1990), 213–220. | DOI | MR

[8] K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. | DOI | MR