Statistical cluster points of sequences in finite dimensional spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 95-102
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the set of statistical cluster points of sequences in $m$-dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in $m$-dimensional spaces too. We also define a notion of $\Gamma $-statistical convergence. A sequence $x$ is $\Gamma $-statistically convergent to a set $C$ if $C$ is a minimal closed set such that for every $\epsilon > 0 $ the set $ \lbrace k\:\rho (C, x_k ) \ge \epsilon \rbrace $ has density zero. It is shown that every statistically bounded sequence is $\Gamma $-statistically convergent. Moreover if a sequence is $\Gamma $-statistically convergent then the limit set is a set of statistical cluster points.
In this paper we study the set of statistical cluster points of sequences in $m$-dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in $m$-dimensional spaces too. We also define a notion of $\Gamma $-statistical convergence. A sequence $x$ is $\Gamma $-statistically convergent to a set $C$ if $C$ is a minimal closed set such that for every $\epsilon > 0 $ the set $ \lbrace k\:\rho (C, x_k ) \ge \epsilon \rbrace $ has density zero. It is shown that every statistically bounded sequence is $\Gamma $-statistically convergent. Moreover if a sequence is $\Gamma $-statistically convergent then the limit set is a set of statistical cluster points.
Classification : 11B05, 40A05
Keywords: compact sets; natural density; statistically bounded sequence; statistical cluster point
@article{CMJ_2004_54_1_a7,
     author = {Pehlivan, S. and G\"uncan, A. and Mamedov, M. A.},
     title = {Statistical cluster points of sequences in finite dimensional spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--102},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040222},
     zbl = {1045.40004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a7/}
}
TY  - JOUR
AU  - Pehlivan, S.
AU  - Güncan, A.
AU  - Mamedov, M. A.
TI  - Statistical cluster points of sequences in finite dimensional spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 95
EP  - 102
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a7/
LA  - en
ID  - CMJ_2004_54_1_a7
ER  - 
%0 Journal Article
%A Pehlivan, S.
%A Güncan, A.
%A Mamedov, M. A.
%T Statistical cluster points of sequences in finite dimensional spaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 95-102
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a7/
%G en
%F CMJ_2004_54_1_a7
Pehlivan, S.; Güncan, A.; Mamedov, M. A. Statistical cluster points of sequences in finite dimensional spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 95-102. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a7/

[1] J. S. Connor: The statistical and strong $p$-Cesàro convergence of sequences. Analysis 8 (1988), 47–63. | MR | Zbl

[2] H.  Fast: Sur la convergence statistique. Collog. Math. 2 (1951), 241–244. | DOI | MR | Zbl

[3] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | MR | Zbl

[4] J. A. Fridy: Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 1187–1192. | DOI | MR | Zbl

[5] J. A. Fridy and C.  Orhan: Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625–3631. | DOI | MR

[6] E.  Kolk: The statistical convergence in Banach spaces. Acta Comm. Univ. Tartuensis 928 (1991), 41–52. | MR

[7] S.  Pehlivan and M. A. Mamedov: Statistical cluster points and turnpike. Optimization 48 (2000), 93–106. | DOI | MR

[8] M. A.  Mamedov and S. Pehlivan: Statistical cluster points and Turnpike theorem in nonconvex problems. J.  Math. Anal. Appl. 256 (2001), 686–693. | DOI | MR

[9] T. Šalát: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. | MR