Keywords: almost convergent sequence; statistically convergent sequence; core of a sequence
@article{CMJ_2004_54_1_a4,
author = {Orhan, C. and Yardimci, \c{S}.},
title = {Banach and statistical cores of bounded sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {65--72},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040219},
zbl = {1045.40002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a4/}
}
Orhan, C.; Yardimci, Ş. Banach and statistical cores of bounded sequences. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a4/
[1] B. Choudhary: An extension of Knopp’s Core Theorem. J. Math. Appl. 132 (1988), 226–233. | MR | Zbl
[2] J. Connor: The statistical and strong $p$-Cesáro convergences. Analysis 8 (1988), 47–63. | DOI | MR
[3] R. G. Cooke: Infinite Matrices and Sequence Spaces. Macmillan, , 1950. | MR | Zbl
[4] G. Das: Sublinear functionals and a class of conservative Matrices. Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. | MR | Zbl
[5] G. Das and S. K. Mishra: A note on a theorem of Maddox on strong almost convergence. Math. Proc. Camb. Phil. Soc. 89 (1981), 393–396. | DOI | MR
[6] K. Demirci: A statistical core of a sequence. Demonstratio Math. 33 (2000), 343–353. | DOI | MR | Zbl
[7] J. P. Duran: Infinite matrices and almost convergence. Math. Z. 128 (1972), 75–83. | DOI | MR | Zbl
[8] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | DOI | MR | Zbl
[9] J. A. Fridy: Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 1187–1192. | DOI | MR | Zbl
[10] J. A. Fridy and C. Orhan: Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625–3631. | DOI | MR
[11] J. A. Fridy and C. Orhan: Statistical core theorems. J. Math. Anal. Appl. 208 (1997), 520–527. | DOI | MR
[12] M. Jerison: The set of all generalized limits of bounded sequences. Canad. J. Math. 9 (1957), 79–89. | DOI | MR | Zbl
[13] J. P. King: Almost summable sequences. Proc. Amer. Math. Soc. 17 (1996), 1219–1225. | MR
[14] K. Knopp: Zur theorie der limitierungsverfahren (Erste Mitteilung). Math. Z. 31 (1930), 97–127. | DOI | MR
[15] E. Kolk: Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77–83. | DOI | MR | Zbl
[16] J. Li and J. A. Fridy: Matrix transformations of statistical cores of complex sequences. Analysis 20 (2000), 15–34. | DOI | MR
[17] L. Loone: Knopp’s core and almost-convergence core in the space $m$. Tartu Riikl. All. Toimetised 335 (1975), 148–156. | MR
[18] G. G. Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80 (1948), 167–190. | DOI | MR | Zbl
[19] I. J. Maddox: Some analogues of Knopp’s Core Theorem. Internat. J. Math. Math. Sci. 2 (1979), 605–614. | DOI | MR | Zbl
[20] H. I. Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819. | DOI | MR | Zbl
[21] H. I. Miller and C. Orhan: On almost convergent and statistically convergent subsequences. Acta Math. Hungar. 93 (2001), 149–165. | DOI | MR
[22] I. Niven, H. S. Zuckerman and H. Montgomery: An Introduction to the Theory of Numbers, Fifth Ed. Wiley, New York, 1991. | MR
[23] C. Orhan: Sublinear functionals and Knopp’s Core Theorem. Internat. J. Math. Math. Sci. 13 (1990), 461–468. | DOI | MR
[24] G. M. Petersen: Regular Matrix Transformations. McGraw-Hill, London, 1966. | MR | Zbl
[25] T. Šalat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. | MR
[26] S. Simons: Banach limits, infinite matrices and sublinear functionals. J. Math. Anal. Appl. 26 (1969), 640–655. | DOI | MR | Zbl
[27] Ş. Yardimci: Core theorems for real bounded sequences. Indian J. Pure Appl. Math. 27 (1996), 861–867. | MR | Zbl