Banach and statistical cores of bounded sequences
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 65-72
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence.
In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence.
Classification : 40A05, 40C05
Keywords: almost convergent sequence; statistically convergent sequence; core of a sequence
@article{CMJ_2004_54_1_a4,
     author = {Orhan, C. and Yardimci, \c{S}.},
     title = {Banach and statistical cores of bounded sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {65--72},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040219},
     zbl = {1045.40002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a4/}
}
TY  - JOUR
AU  - Orhan, C.
AU  - Yardimci, Ş.
TI  - Banach and statistical cores of bounded sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 65
EP  - 72
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a4/
LA  - en
ID  - CMJ_2004_54_1_a4
ER  - 
%0 Journal Article
%A Orhan, C.
%A Yardimci, Ş.
%T Banach and statistical cores of bounded sequences
%J Czechoslovak Mathematical Journal
%D 2004
%P 65-72
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a4/
%G en
%F CMJ_2004_54_1_a4
Orhan, C.; Yardimci, Ş. Banach and statistical cores of bounded sequences. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a4/

[1] B.  Choudhary: An extension of Knopp’s Core Theorem. J. Math. Appl. 132 (1988), 226–233. | MR | Zbl

[2] J.  Connor: The statistical and strong $p$-Cesáro convergences. Analysis 8 (1988), 47–63. | DOI | MR

[3] R. G.  Cooke: Infinite Matrices and Sequence Spaces. Macmillan, , 1950. | MR | Zbl

[4] G.  Das: Sublinear functionals and a class of conservative Matrices. Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. | MR | Zbl

[5] G.  Das and S. K.  Mishra: A note on a theorem of Maddox on strong almost convergence. Math. Proc. Camb. Phil. Soc. 89 (1981), 393–396. | DOI | MR

[6] K.  Demirci: A statistical core of a sequence. Demonstratio Math. 33 (2000), 343–353. | DOI | MR | Zbl

[7] J. P.  Duran: Infinite matrices and almost convergence. Math. Z. 128 (1972), 75–83. | DOI | MR | Zbl

[8] J. A.  Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | DOI | MR | Zbl

[9] J. A.  Fridy: Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 1187–1192. | DOI | MR | Zbl

[10] J. A.  Fridy and C.  Orhan: Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625–3631. | DOI | MR

[11] J. A.  Fridy and C.  Orhan: Statistical core theorems. J.  Math. Anal. Appl. 208 (1997), 520–527. | DOI | MR

[12] M.  Jerison: The set of all generalized limits of bounded sequences. Canad. J. Math. 9 (1957), 79–89. | DOI | MR | Zbl

[13] J. P. King: Almost summable sequences. Proc. Amer. Math. Soc. 17 (1996), 1219–1225. | MR

[14] K.  Knopp: Zur theorie der limitierungsverfahren (Erste Mitteilung). Math. Z. 31 (1930), 97–127. | DOI | MR

[15] E.  Kolk: Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77–83. | DOI | MR | Zbl

[16] J.  Li and J. A.  Fridy: Matrix transformations of statistical cores of complex sequences. Analysis 20 (2000), 15–34. | DOI | MR

[17] L.  Loone: Knopp’s core and almost-convergence core in the space $m$. Tartu Riikl. All. Toimetised 335 (1975), 148–156. | MR

[18] G. G.  Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80 (1948), 167–190. | DOI | MR | Zbl

[19] I. J.  Maddox: Some analogues of Knopp’s Core Theorem. Internat. J.  Math. Math. Sci. 2 (1979), 605–614. | DOI | MR | Zbl

[20] H. I.  Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819. | DOI | MR | Zbl

[21] H. I.  Miller and C.  Orhan: On almost convergent and statistically convergent subsequences. Acta Math. Hungar. 93 (2001), 149–165. | DOI | MR

[22] I.  Niven, H. S.  Zuckerman and H.  Montgomery: An Introduction to the Theory of Numbers, Fifth Ed. Wiley, New York, 1991. | MR

[23] C.  Orhan: Sublinear functionals and Knopp’s Core Theorem. Internat. J.  Math. Math. Sci. 13 (1990), 461–468. | DOI | MR

[24] G. M.  Petersen: Regular Matrix Transformations. McGraw-Hill, London, 1966. | MR | Zbl

[25] T.  Šalat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. | MR

[26] S.  Simons: Banach limits, infinite matrices and sublinear functionals. J.  Math. Anal. Appl. 26 (1969), 640–655. | DOI | MR | Zbl

[27] Ş.  Yardimci: Core theorems for real bounded sequences. Indian J.  Pure Appl. Math. 27 (1996), 861–867. | MR | Zbl