Keywords: pseudo-ordered set; trellis; $p$-chain; ascending well-ordered $p$-chain; cycle-complete trellis; complete trellis
@article{CMJ_2004_54_1_a24,
author = {Bhatta, S. Parameshwara and Shashirekha, H.},
title = {Some characterizations of completeness for trellises in terms of joins of cycles},
journal = {Czechoslovak Mathematical Journal},
pages = {267--272},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040239},
zbl = {1049.06004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a24/}
}
TY - JOUR AU - Bhatta, S. Parameshwara AU - Shashirekha, H. TI - Some characterizations of completeness for trellises in terms of joins of cycles JO - Czechoslovak Mathematical Journal PY - 2004 SP - 267 EP - 272 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a24/ LA - en ID - CMJ_2004_54_1_a24 ER -
Bhatta, S. Parameshwara; Shashirekha, H. Some characterizations of completeness for trellises in terms of joins of cycles. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 267-272. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a24/
[1] P. Crawley and R. P. Dilworth: Algebraic Theory of Lattices. Prentice Hall, Inc., Englewood Cliffs, 1973.
[2] E. Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151–164. | MR
[3] E. Fried and G. Gratzer: Some examples of weakly associative lattices. Colloq. Math. 27 (1973), 215–221. | DOI | MR
[4] K. Gladstien: A characterization of complete trellises of finite length. Algebra Universalis 3 (1973), 341–344. | DOI | MR | Zbl
[5] S. Parameshwara Bhatta and H. Shashirekha: A characterization of completeness for trellises. Algebra Universalis 44 (2000), 305–308. | DOI | MR
[6] H. L. Skala: Trellis theory. Algebra Universalis 1 (1971), 218–233. | DOI | MR | Zbl