Commutator subgroups of the extended Hecke groups $\bar{H}(\lambda_q)$
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 253-259
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Hecke groups $H(\lambda _q)$ are the discrete subgroups of ${\mathrm PSL}(2,\mathbb{R})$ generated by $S(z)=-(z+\lambda _q)^{-1}$ and $T(z)=-\frac{1}{z} $. The commutator subgroup of $H$($\lambda _q)$, denoted by $H^{\prime }(\lambda _q)$, is studied in [2]. It was shown that $H^{\prime }(\lambda _q)$ is a free group of rank $q-1$. Here the extended Hecke groups $\bar{H}(\lambda _q)$, obtained by adjoining $R_1(z)=1/\bar{z}$ to the generators of $H(\lambda _q)$, are considered. The commutator subgroup of $\bar{H}(\lambda _q)$ is shown to be a free product of two finite cyclic groups. Also it is interesting to note that while in the $H(\lambda _q)$ case, the index of $H^{\prime }(\lambda _q)$ is changed by $q$, in the case of $\bar{H}(\lambda _q)$, this number is either 4 for $q$ odd or 8 for $q$ even.
Hecke groups $H(\lambda _q)$ are the discrete subgroups of ${\mathrm PSL}(2,\mathbb{R})$ generated by $S(z)=-(z+\lambda _q)^{-1}$ and $T(z)=-\frac{1}{z} $. The commutator subgroup of $H$($\lambda _q)$, denoted by $H^{\prime }(\lambda _q)$, is studied in [2]. It was shown that $H^{\prime }(\lambda _q)$ is a free group of rank $q-1$. Here the extended Hecke groups $\bar{H}(\lambda _q)$, obtained by adjoining $R_1(z)=1/\bar{z}$ to the generators of $H(\lambda _q)$, are considered. The commutator subgroup of $\bar{H}(\lambda _q)$ is shown to be a free product of two finite cyclic groups. Also it is interesting to note that while in the $H(\lambda _q)$ case, the index of $H^{\prime }(\lambda _q)$ is changed by $q$, in the case of $\bar{H}(\lambda _q)$, this number is either 4 for $q$ odd or 8 for $q$ even.
Classification : 11F06, 20H05, 20H10
Keywords: Hecke group; extended Hecke group; commutator subgroup
@article{CMJ_2004_54_1_a22,
     author = {Sahin, R. and Bizim, O. and Cangul, I. N.},
     title = {Commutator subgroups of the extended {Hecke} groups $\bar{H}(\lambda_q)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {253--259},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040237},
     zbl = {1053.11038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a22/}
}
TY  - JOUR
AU  - Sahin, R.
AU  - Bizim, O.
AU  - Cangul, I. N.
TI  - Commutator subgroups of the extended Hecke groups $\bar{H}(\lambda_q)$
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 253
EP  - 259
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a22/
LA  - en
ID  - CMJ_2004_54_1_a22
ER  - 
%0 Journal Article
%A Sahin, R.
%A Bizim, O.
%A Cangul, I. N.
%T Commutator subgroups of the extended Hecke groups $\bar{H}(\lambda_q)$
%J Czechoslovak Mathematical Journal
%D 2004
%P 253-259
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a22/
%G en
%F CMJ_2004_54_1_a22
Sahin, R.; Bizim, O.; Cangul, I. N. Commutator subgroups of the extended Hecke groups $\bar{H}(\lambda_q)$. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 253-259. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a22/

[1] R. B. J. T.  Allenby: Rings, Fields and Groups. Second Edition. Edward Arnold, London-New York-Melbourne-Auckland, 1991. | MR

[2] I. N.  Cangül and D.  Singerman: Normal subgroups of Hecke groups and regular maps. Math. Proc. Camb. Phil. Soc. 123 (1998), 59–74. | DOI | MR

[3] H. S. M.  Coxeter and W. O. J. Moser: Generators and Relations for Discrete Groups. Springer, Berlin, 1957. | MR

[4] E. Hecke: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen. Math. Ann. 112 (1936), 664–699. | DOI | MR

[5] D. L. Johnson: Topics in the Theory of Group Presentations. L.M.S. Lecture Note Series  42. Cambridge Univ. Press, Cambridge, 1980. | MR

[6] G. A. Jones and J. S.  Thornton: Automorphisms and congruence subgroups of the extended modular group. J.  London Math. Soc. 34 (1986), 26–40. | DOI | MR