On super hamiltonian semigroups
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 247-252
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concept of super hamiltonian semigroup is introduced. As a result, the structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semigroups and quasi hamiltonian semigroups respectively are extended to super hamiltonian semigroups.
The concept of super hamiltonian semigroup is introduced. As a result, the structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semigroups and quasi hamiltonian semigroups respectively are extended to super hamiltonian semigroups.
Classification : 20M10
Keywords: quasi hamiltonian semigroups; super hamiltonian semigroups; quasi commutative semigroups; quasi-groups; strong semilattices of semigroups
@article{CMJ_2004_54_1_a21,
     author = {Shum, K. P. and Ren, X. M.},
     title = {On super hamiltonian semigroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {247--252},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040236},
     zbl = {1051.20024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a21/}
}
TY  - JOUR
AU  - Shum, K. P.
AU  - Ren, X. M.
TI  - On super hamiltonian semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 247
EP  - 252
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a21/
LA  - en
ID  - CMJ_2004_54_1_a21
ER  - 
%0 Journal Article
%A Shum, K. P.
%A Ren, X. M.
%T On super hamiltonian semigroups
%J Czechoslovak Mathematical Journal
%D 2004
%P 247-252
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a21/
%G en
%F CMJ_2004_54_1_a21
Shum, K. P.; Ren, X. M. On super hamiltonian semigroups. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 247-252. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a21/

[1] M.  Chacron and G. Thierrin: $\sigma $-reflexive semigroups and rings. Canad. Math. Bull. 15 (1972), 185–188. | DOI | MR

[2] A.  Cherubini Spoletini and A.  Varisco: Quasi commutative semigroups and $\sigma $-reflexive semigroups. Semigroup Forum 19 (1980), 313–321. | DOI | MR

[3] A. Cherubini Spoletini and A.  Varisco: Quasi hamoltoniam semigroups. Czechoslovak Math. J. 33(108) (1983), 131–140. | MR

[4] Z. L.  Gao and K. P. Shum: On cyclic commutative po-semigroups. PU.M.A. 18 (1997), 261–273. | MR

[5] H.  Lal: Quasi commutative primary semigroups. Mat. Vesnik 12 (1975), 271–278. | MR | Zbl

[6] N. P.  Mukherjee: Quasi commutative semigroups I. Czechoslovak Math. J. 22(97) (1972), 449–453. | MR

[7] C. S. H.  Nagore: Quasi commutative Q-semigroups. Semigroup Forum 15 (1978), 189–193. | DOI | MR | Zbl

[8] M.  Petrich: Lectures in Semigroups. Akademie Verlag, Berlin, 1977. | MR | Zbl

[9] B.  Pondělíček: On weakly commutative semigroups. Czechoslovak. Math. J. 25(100) (1975), 20–23. | MR

[10] M. S.  Putcha: Bands of $t$-archimedean semigroups. Semigroup Forum 6 (1973), 232–239. | DOI | MR

[11] K. P.  Shum, X. M.  Ren and Y. Q.  Guo: On Quasi-Left Groups. Groups-Korea’94, Walter de Gruyter & Co., Berlin, New York, 1995, pp. 285–288. | MR

[12] K. P. Shum and Y. Q.  Guo: Regular semigroups and its generalizations. Lecture Series  181 (Pure & Applied Math.), Marcell Dekker INC., 1996, pp. 181–225. | MR