Multilinear operators on $C(K,X)$ spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 31-54
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given Banach spaces~ $X$, $Y$ and a compact Hausdorff space~ $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into~ $Y$ to be completely continuous (resp.~ unconditionally converging). We deduce necessary and sufficient conditions for~ $X$ to have the Schur property (resp.~ to contain no copy of~ $c_0$), and for~ $K$ to be scattered. This extends results concerning linear operators.
Given Banach spaces~ $X$, $Y$ and a compact Hausdorff space~ $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into~ $Y$ to be completely continuous (resp.~ unconditionally converging). We deduce necessary and sufficient conditions for~ $X$ to have the Schur property (resp.~ to contain no copy of~ $c_0$), and for~ $K$ to be scattered. This extends results concerning linear operators.
Classification : 46B25, 46G10, 46G25, 47B07, 47H60
Keywords: completely continuous; unconditionally converging; multilinear operators; $C(K, X)$ spaces
@article{CMJ_2004_54_1_a2,
     author = {Villanueva, Ignacio},
     title = {Multilinear operators on $C(K,X)$ spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {31--54},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040217},
     zbl = {1050.46032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a2/}
}
TY  - JOUR
AU  - Villanueva, Ignacio
TI  - Multilinear operators on $C(K,X)$ spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 31
EP  - 54
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a2/
LA  - en
ID  - CMJ_2004_54_1_a2
ER  - 
%0 Journal Article
%A Villanueva, Ignacio
%T Multilinear operators on $C(K,X)$ spaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 31-54
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a2/
%G en
%F CMJ_2004_54_1_a2
Villanueva, Ignacio. Multilinear operators on $C(K,X)$ spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a2/

[1] R. M.  Aron, C.  Hervés and M.  Valdivia: Weakly continuous mappings on Banach spaces. J.  Funct. Anal. 52 (1983), 189–204. | DOI | MR

[2] F.  Bombal: Medidas vectoriales y espacios de funciones continuas. Publicaciones del Departamento de Análisis Matemático, Sección  1, No.  3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984.

[3] F.  Bombal and P.  Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions. Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146. | DOI | MR

[4] F.  Bombal, M.  Fernández and I. Villanueva: Unconditionally converging multilinear operators. Math. Nachr. 226 (2001), 5–15. | DOI | MR

[5] F.  Bombal and I.  Villanueva: Multilinear operators in spaces of continuous functions. Funct. Approx. Comment. Math. XXVI (1998), 117–126. | MR

[6] F. Bombal and I. Villanueva: Polynomial sequential continuity on $C(K,E)$ spaces. J. Math. Anal. Appl. 282 (2003), 341–355. | DOI | MR

[7] J.  Brooks and P.  Lewis: Linear operators and vector measures. Trans. Amer. Math. Soc. 192 (1974), 39–162. | DOI | MR

[8] F.  Cabello, R.  García and I.  Villanueva: Regularity and extension of multilinear forms on Banach spaces. Extracta Mathematicae (2000).

[9] P.  Cembranos and J.  Mendoza: Banach Spaces of Vector-valued Functions. Lecture Notes in Math. Vol. 1676. Springer, Berlin, 1997. | DOI | MR

[10] J.  Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Math. Vol.  92, Springer, Berlin, 1984. | MR

[11] J.  Diestel, H.  Jarchow and A.  Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol.  43. Cambridge Univ. Press, Cambridge, 1995. | MR

[12] N.  Dinculeanu: Vector Measures. Pergamon Press, 1967. | MR | Zbl

[13] N.  Dinculeanu and M.  Muthiah: Bimeasures in Banach spaces. Preprint. | MR

[14] I.  Dobrakov: On representation of linear operators on $ C_0 (T , X )$. Czechoslovak Math.  J. 21(96) (1971), 13–30. | MR

[15] I.  Dobrakov: On integration in Banach spaces. VIII (polymeasures). Czechoslovak Math.  J. 37(112) (1987), 487–506. | MR | Zbl

[16] I.  Dobrakov: Representation of multilinear operators on $\times C_0 (T_i , X_i )$, I. Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. | MR

[17] M.  Fernández Unzueta: Unconditionally convergent polynomials in Banach spaces and related properties. Extracta Math. 12 (1997), 305–307. | MR

[18] M.  González and J.  Gutiérrez: Orlicz-Pettis polynomials on Banach spaces. Monats. Math. 129 (2000), 341–350. | DOI

[19] J.  Gutiérrez and I.  Villanueva: Aron-Berner extensions and Banach space properties. Preprint.

[20] B.  Jefferies: Radon polymeasures. Bull. Austral. Math. Soc. 32 (1985), 207–215. | DOI | MR | Zbl

[21] B.  Jefferies and W.  Ricker: Integration with respect to vector valued radon polymeasures. J. Austral. Math. Soc. (Series A) 56 (1994), 17–40. | DOI | MR

[22] H. E.  Lacey: The Isometric Theory of Classical Banach Spaces. Springer-Verlag, 1974. | MR | Zbl

[23] P.  Saab: Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions. Math. Proc. Camb. Phil. Soc. 95 (1984), 101–108. | DOI | MR | Zbl

[24] I.  Villanueva: Representación de operadores multilineales en espacios de funciones continuas. PhD. Thesis, Universidad Complutense de Madrid, 1999.

[25] I.  Villanueva: Completely continuous multilinear operators on  $C(K)$ spaces. Proc. Amer. Math. Soc. 128 (1984), 793–801. | DOI | MR