Keywords: completely continuous; unconditionally converging; multilinear operators; $C(K, X)$ spaces
@article{CMJ_2004_54_1_a2,
author = {Villanueva, Ignacio},
title = {Multilinear operators on $C(K,X)$ spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {31--54},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040217},
zbl = {1050.46032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a2/}
}
Villanueva, Ignacio. Multilinear operators on $C(K,X)$ spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a2/
[1] R. M. Aron, C. Hervés and M. Valdivia: Weakly continuous mappings on Banach spaces. J. Funct. Anal. 52 (1983), 189–204. | DOI | MR
[2] F. Bombal: Medidas vectoriales y espacios de funciones continuas. Publicaciones del Departamento de Análisis Matemático, Sección 1, No. 3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984.
[3] F. Bombal and P. Cembranos: Characterization of some classes of operators on spaces of vector valued continuous functions. Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146. | DOI | MR
[4] F. Bombal, M. Fernández and I. Villanueva: Unconditionally converging multilinear operators. Math. Nachr. 226 (2001), 5–15. | DOI | MR
[5] F. Bombal and I. Villanueva: Multilinear operators in spaces of continuous functions. Funct. Approx. Comment. Math. XXVI (1998), 117–126. | MR
[6] F. Bombal and I. Villanueva: Polynomial sequential continuity on $C(K,E)$ spaces. J. Math. Anal. Appl. 282 (2003), 341–355. | DOI | MR
[7] J. Brooks and P. Lewis: Linear operators and vector measures. Trans. Amer. Math. Soc. 192 (1974), 39–162. | DOI | MR
[8] F. Cabello, R. García and I. Villanueva: Regularity and extension of multilinear forms on Banach spaces. Extracta Mathematicae (2000).
[9] P. Cembranos and J. Mendoza: Banach Spaces of Vector-valued Functions. Lecture Notes in Math. Vol. 1676. Springer, Berlin, 1997. | DOI | MR
[10] J. Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Math. Vol. 92, Springer, Berlin, 1984. | MR
[11] J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol. 43. Cambridge Univ. Press, Cambridge, 1995. | MR
[12] N. Dinculeanu: Vector Measures. Pergamon Press, 1967. | MR | Zbl
[13] N. Dinculeanu and M. Muthiah: Bimeasures in Banach spaces. Preprint. | MR
[14] I. Dobrakov: On representation of linear operators on $ C_0 (T , X )$. Czechoslovak Math. J. 21(96) (1971), 13–30. | MR
[15] I. Dobrakov: On integration in Banach spaces. VIII (polymeasures). Czechoslovak Math. J. 37(112) (1987), 487–506. | MR | Zbl
[16] I. Dobrakov: Representation of multilinear operators on $\times C_0 (T_i , X_i )$, I. Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. | MR
[17] M. Fernández Unzueta: Unconditionally convergent polynomials in Banach spaces and related properties. Extracta Math. 12 (1997), 305–307. | MR
[18] M. González and J. Gutiérrez: Orlicz-Pettis polynomials on Banach spaces. Monats. Math. 129 (2000), 341–350. | DOI
[19] J. Gutiérrez and I. Villanueva: Aron-Berner extensions and Banach space properties. Preprint.
[20] B. Jefferies: Radon polymeasures. Bull. Austral. Math. Soc. 32 (1985), 207–215. | DOI | MR | Zbl
[21] B. Jefferies and W. Ricker: Integration with respect to vector valued radon polymeasures. J. Austral. Math. Soc. (Series A) 56 (1994), 17–40. | DOI | MR
[22] H. E. Lacey: The Isometric Theory of Classical Banach Spaces. Springer-Verlag, 1974. | MR | Zbl
[23] P. Saab: Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions. Math. Proc. Camb. Phil. Soc. 95 (1984), 101–108. | DOI | MR | Zbl
[24] I. Villanueva: Representación de operadores multilineales en espacios de funciones continuas. PhD. Thesis, Universidad Complutense de Madrid, 1999.
[25] I. Villanueva: Completely continuous multilinear operators on $C(K)$ spaces. Proc. Amer. Math. Soc. 128 (1984), 793–801. | DOI | MR