On uniformly locally compact quasi-uniform hyperspaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 215-228 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize those Tychonoff quasi-uniform spaces $(X,\mathcal {U})$ for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family $\mathcal {K}_{0}(X)$ of nonempty compact subsets of $X$. We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space $X$ is uniformly locally compact on $\mathcal {K}_{0}(X)$ if and only if $X$ is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show that a Hausdorff topological space is $\sigma $-compact if and only if its (lower) semicontinuous quasi-uniformity is co-uniformly locally compact. A characterization of those Hausdorff quasi-uniform spaces $(X,\mathcal {U})$ for which the Hausdorff-Bourbaki quasi-uniformity is co-uniformly locally compact on $\mathcal {K}_{0}(X)$ is obtained.
We characterize those Tychonoff quasi-uniform spaces $(X,\mathcal {U})$ for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family $\mathcal {K}_{0}(X)$ of nonempty compact subsets of $X$. We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space $X$ is uniformly locally compact on $\mathcal {K}_{0}(X)$ if and only if $X$ is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show that a Hausdorff topological space is $\sigma $-compact if and only if its (lower) semicontinuous quasi-uniformity is co-uniformly locally compact. A characterization of those Hausdorff quasi-uniform spaces $(X,\mathcal {U})$ for which the Hausdorff-Bourbaki quasi-uniformity is co-uniformly locally compact on $\mathcal {K}_{0}(X)$ is obtained.
Classification : 54B20, 54D45, 54E15
Keywords: Hausdorff-Bourbaki quasi-uniformity; hyperspace; locally compact; cofinally complete; uniformly locally compact; co-uniformly locally compact
@article{CMJ_2004_54_1_a18,
     author = {K\"unzi, H. P. A. and Romaguera, S. and S\'anchez-Granero, M. A.},
     title = {On uniformly locally compact quasi-uniform hyperspaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {215--228},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040233},
     zbl = {1051.54023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a18/}
}
TY  - JOUR
AU  - Künzi, H. P. A.
AU  - Romaguera, S.
AU  - Sánchez-Granero, M. A.
TI  - On uniformly locally compact quasi-uniform hyperspaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 215
EP  - 228
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a18/
LA  - en
ID  - CMJ_2004_54_1_a18
ER  - 
%0 Journal Article
%A Künzi, H. P. A.
%A Romaguera, S.
%A Sánchez-Granero, M. A.
%T On uniformly locally compact quasi-uniform hyperspaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 215-228
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a18/
%G en
%F CMJ_2004_54_1_a18
Künzi, H. P. A.; Romaguera, S.; Sánchez-Granero, M. A. On uniformly locally compact quasi-uniform hyperspaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 215-228. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a18/

[1] G.  Beer: Topologies on Closed and Convex Closed Sets. Mathematics and its Applications, Vol.  268. Kluwer Acad. Publ., , 1993. | MR

[2] G.  Berthiaume: On quasi-uniformities in hyperspaces. Proc. Amer. Math. Soc. 66 (1977), 335–343. | DOI | MR | Zbl

[3] B. S.  Burdick: Local compactness of hyperspaces. Ann. New York Acad. Sci. 704 (1993), 28–33. | DOI | MR | Zbl

[4] M. M.  Coban: Note sur la topologie exponentielle. Fund. Math. 71 (1971), 27–41. | DOI | MR

[5] H. H.  Corson: The determination of paracompactness by uniformities. Amer. J.  Math. 80 (1958), 185–190. | DOI | MR | Zbl

[6] R.  Engelking: General Topology. Polish Sci. Publ., Warsaw, 1977. | MR | Zbl

[7] N. R.  Howes: Modern Analysis and Topology. University text. Springer-Verlag, New York, 1995. | MR

[8] P.  Fletcher and W. F.  Lindgren: $C$-complete quasi-uniform spaces. Arch. Math. (Basel) 30 (1978), 175–180. | DOI | MR

[9] P.  Fletcher and W. F.  Lindgren: Quasi-Uniform Spaces. Marcel Dekker, New York, 1982. | MR

[10] H. P. A.  Künzi, M. Mršević, I. L.  Reilly and M. K.  Vamanamurthy: Convergence, precompactness and symmetry in quasi-uniform spaces. Math. Japonica 38 (1993), 239–253. | MR

[11] H. P. A.  Künzi, S.  Romaguera: Left $K$-completeness of the Hausdorff quasi-uniformity. Rostock. Math. Kolloq. 51 (1997), 167–176.

[12] H. P. A.  Künzi, S.  Romaguera: Well-quasi-ordering and the Hausdorff quasi-uniformity. Topology Appl. 85 (1998), 207–218. | DOI | MR

[13] H. P. A.  Künzi and S.  Romaguera: Quasi-metric spaces, quasi-metric hyperspaces and uniform local compactness. Rend. Istit. Mat. Univ. Trieste 30 Suppl. (1999), 133–144. | MR

[14] H. P. A.  Künzi and C.  Ryser: The Bourbaki quasi-uniformity. Topology Proc. 20 (1995), 161–183. | MR

[15] E.  Michael: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182. | DOI | MR | Zbl

[16] I. L.  Reilly, P. V.  Subrahmanyam and M. K.  Vamanamurthy: Cauchy sequences in quasi-pseudo-metric spaces. Monatsh. Math. 93 (1982), 127–140. | DOI | MR

[17] M. D.  Rice: A note on uniform paracompactness. Proc. Amer. Math. Soc. 62 (1977), 359–362. | MR | Zbl

[18] J.  Rodríguez-López and S.  Romaguera: The relationship between the Vietoris topology and the Hausdorff quasi-uniformity. Topology Appl 124 (2002), 451–464. | DOI | MR

[19] S.  Romaguera: On hereditary precompactness and completeness in quasi-uniform spaces. Acta Math. Hungar. 73 (1996), 159–178. | DOI | MR | Zbl

[20] S.  Romaguera and M.  Sanchis: Locally compact topological groups and cofinal completeness. J.  London Math. Soc. 62 (2000), 451–460. | DOI | MR

[21] M. A.  Sánchez-Granero: Covering axioms, directed GF-spaces and quasi-uniformities. Publ. Math. Debrecen 61 (2002), 357–381. | MR