On set covariance and three-point test sets
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 205-214 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The information contained in the measure of all shifts of two or three given points contained in an observed compact subset of $\mathbb{R}^d $ is studied. In particular, the connection of the first order directional derivatives of the described characteristic with the oriented and the unoriented normal measure of a set representable as a finite union of sets with positive reach is established. For smooth convex bodies with positive curvatures, the second and the third order directional derivatives of the characteristic is computed.
The information contained in the measure of all shifts of two or three given points contained in an observed compact subset of $\mathbb{R}^d $ is studied. In particular, the connection of the first order directional derivatives of the described characteristic with the oriented and the unoriented normal measure of a set representable as a finite union of sets with positive reach is established. For smooth convex bodies with positive curvatures, the second and the third order directional derivatives of the characteristic is computed.
Classification : 52A22, 60D05
Keywords: convex body; set with positive reach; normal measure; set covariance
@article{CMJ_2004_54_1_a17,
     author = {Rataj, J.},
     title = {On set covariance and three-point test sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {205--214},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040232},
     zbl = {1049.52004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a17/}
}
TY  - JOUR
AU  - Rataj, J.
TI  - On set covariance and three-point test sets
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 205
EP  - 214
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a17/
LA  - en
ID  - CMJ_2004_54_1_a17
ER  - 
%0 Journal Article
%A Rataj, J.
%T On set covariance and three-point test sets
%J Czechoslovak Mathematical Journal
%D 2004
%P 205-214
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a17/
%G en
%F CMJ_2004_54_1_a17
Rataj, J. On set covariance and three-point test sets. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 205-214. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a17/

[1] G.  Bianchi, F.  Segala, and A.  Volčič: The solution of the covariogram problem for plane $C^2_+$ convex bodies. J. Differential Geom. 60 (2002), 177–198. | DOI | MR

[2] H.  Federer: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418–491. | DOI | MR | Zbl

[3] H.  Federer: Geometric Measure Theory. Springer-Verlag, Berlin, 1969. | MR | Zbl

[4] A.  Lešanovský and J.  Rataj: Determination of compact sets in Euclidean spaces by the volume of their dilation. DIANA III (Proc. conf.), MÚ ČSAV, Praha, 1990, pp. 165–177.

[5] A.  Lešanovský, J.  Rataj and S.  Hojek: 0-1 sequences having the same numbers of (1-1)  couples of given distances. Math. Bohem. 117 (1992), 271–282. | MR

[6] G.  Matheron: Random Sets and Integral Geometry. J.  Wiley, New York, 1975. | MR | Zbl

[7] W.  Nagel: Das Geometrische Kovariogramm und verwandte Größen zweiter Ordnung. Habilitationsschrift, Friedrich-Schiller-Universität Jena (1992).

[8] R.  Pyke: Problems corner. IMS Bulletin 18 (1989), 387.

[9] J.  Rataj: Characterization of compact sets by their dilation volume. Math. Nachr. 173 (1995), 287–295. | DOI | MR | Zbl

[10] J.  Rataj: Estimation of oriented direction distribution of a planar body. Adv. Appl. Probab. 28 (1996), 394–404. | DOI | MR | Zbl

[11] J.  Rataj: Determination of spherical area measures by means of dilation volumes. Math. Nachr. 235 (2002), 143–162. | DOI | MR | Zbl

[12] J.  Rataj and M.  Zähle: Mixed curvature measures for sets of positive reach and a translative integral formula. Geom. Dedicata 57 (1995), 259–283. | DOI | MR

[13] J.  Rataj and M.  Zähle: Curvatures and currents for unions of sets with positive reach, II. Ann. Glob. Anal. Geom. 20 (2001), 1–21. | DOI | MR

[14] J.  Rataj and M.  Zähle: A remark on mixed curvature measures for sets with positive reach. Beiträge Alg. Geom. 43 (2002), 171–179. | MR

[15] R.  Schneider: On the mean normal measures of a particle process. Adv. Appl. Probab. 33 (2001), 25–38. | DOI | MR | Zbl

[16] W.  Weil: The estimation of mean shape and mean particle number in overlapping particle systems in the plane. Adv. Appl. Probab. 27 (1995), 102–119. | DOI | MR | Zbl