Keywords: convex body; set with positive reach; normal measure; set covariance
@article{CMJ_2004_54_1_a17,
author = {Rataj, J.},
title = {On set covariance and three-point test sets},
journal = {Czechoslovak Mathematical Journal},
pages = {205--214},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040232},
zbl = {1049.52004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a17/}
}
Rataj, J. On set covariance and three-point test sets. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 205-214. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a17/
[1] G. Bianchi, F. Segala, and A. Volčič: The solution of the covariogram problem for plane $C^2_+$ convex bodies. J. Differential Geom. 60 (2002), 177–198. | DOI | MR
[2] H. Federer: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418–491. | DOI | MR | Zbl
[3] H. Federer: Geometric Measure Theory. Springer-Verlag, Berlin, 1969. | MR | Zbl
[4] A. Lešanovský and J. Rataj: Determination of compact sets in Euclidean spaces by the volume of their dilation. DIANA III (Proc. conf.), MÚ ČSAV, Praha, 1990, pp. 165–177.
[5] A. Lešanovský, J. Rataj and S. Hojek: 0-1 sequences having the same numbers of (1-1) couples of given distances. Math. Bohem. 117 (1992), 271–282. | MR
[6] G. Matheron: Random Sets and Integral Geometry. J. Wiley, New York, 1975. | MR | Zbl
[7] W. Nagel: Das Geometrische Kovariogramm und verwandte Größen zweiter Ordnung. Habilitationsschrift, Friedrich-Schiller-Universität Jena (1992).
[8] R. Pyke: Problems corner. IMS Bulletin 18 (1989), 387.
[9] J. Rataj: Characterization of compact sets by their dilation volume. Math. Nachr. 173 (1995), 287–295. | DOI | MR | Zbl
[10] J. Rataj: Estimation of oriented direction distribution of a planar body. Adv. Appl. Probab. 28 (1996), 394–404. | DOI | MR | Zbl
[11] J. Rataj: Determination of spherical area measures by means of dilation volumes. Math. Nachr. 235 (2002), 143–162. | DOI | MR | Zbl
[12] J. Rataj and M. Zähle: Mixed curvature measures for sets of positive reach and a translative integral formula. Geom. Dedicata 57 (1995), 259–283. | DOI | MR
[13] J. Rataj and M. Zähle: Curvatures and currents for unions of sets with positive reach, II. Ann. Glob. Anal. Geom. 20 (2001), 1–21. | DOI | MR
[14] J. Rataj and M. Zähle: A remark on mixed curvature measures for sets with positive reach. Beiträge Alg. Geom. 43 (2002), 171–179. | MR
[15] R. Schneider: On the mean normal measures of a particle process. Adv. Appl. Probab. 33 (2001), 25–38. | DOI | MR | Zbl
[16] W. Weil: The estimation of mean shape and mean particle number in overlapping particle systems in the plane. Adv. Appl. Probab. 27 (1995), 102–119. | DOI | MR | Zbl