Zero-term ranks of real matrices and their preservers
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 183-188
Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the $m \times n$ real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix.
Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the $m \times n$ real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix.
@article{CMJ_2004_54_1_a15,
author = {Beasley, LeRoy B. and Jun, Young-Bae and Song, Seok-Zun},
title = {Zero-term ranks of real matrices and their preservers},
journal = {Czechoslovak Mathematical Journal},
pages = {183--188},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040230},
zbl = {1051.15001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a15/}
}
TY - JOUR AU - Beasley, LeRoy B. AU - Jun, Young-Bae AU - Song, Seok-Zun TI - Zero-term ranks of real matrices and their preservers JO - Czechoslovak Mathematical Journal PY - 2004 SP - 183 EP - 188 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a15/ LA - en ID - CMJ_2004_54_1_a15 ER -
Beasley, LeRoy B.; Jun, Young-Bae; Song, Seok-Zun. Zero-term ranks of real matrices and their preservers. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 183-188. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a15/
[1] L. B. Beasley and N. J. Pullman: Term-rank, permanent and rook-polynomial preservers. Linear Algebra Appl. 90 (1987), 33–46. | DOI | MR
[2] L. B. Beasley, S. Z. Song and S. G. Lee: Zero-term rank preservers. Linear and Multilinear Algebra 48 (2001), 313–318. | DOI | MR
[3] C. R. Johnson and J. S. Maybee: Vanishing minor conditions for inverse zero patterns. Linear Algebra Appl. 178 (1993), 1–15. | MR