Keywords: hyperspaces; Vietoris topology; locally finite topology; Hausdorff metric; compactness; normality; countable compactness
@article{CMJ_2004_54_1_a14,
author = {Maio, G. Di and Meccariello, E. and Naimpally, S.},
title = {Normal {Vietoris} implies compactness: a short proof},
journal = {Czechoslovak Mathematical Journal},
pages = {181--182},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040229},
zbl = {1049.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a14/}
}
Maio, G. Di; Meccariello, E.; Naimpally, S. Normal Vietoris implies compactness: a short proof. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 181-182. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a14/
[1] G. Beer: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, , 1993. | MR | Zbl
[2] A. Di Concilio, S. A. Naimpally and P. L. Sharma: Proximal hypertopologies. Proceedings of the VI Brasilian Topological Meeting, Campinas, Brazil (1988), Unpublished.
[3] R. Engelking: General Topology. Helderman Verlag, Berlin, 1989, Revised and completed version. | MR | Zbl
[4] V. M. Ivanova: On the theory of the space of subsets. Dokl. Akad. Nauk. SSSR 101 (1955), 601–603. | MR
[5] J. Keesling: Normality and properties related to compactness in hyperspaces. Proc. Amer. Math. Soc. 24 (1970), 760–766. | DOI | MR | Zbl
[6] J. Keesling: On the equivalence of normality and compactness in hyperspaces. Pacific J. Math. 33 (1970), 657–667. | DOI | MR | Zbl
[7] S. A. Naimpally and P. L. Sharma: Fine uniformity and the locally finite hyperspace topology on $2^X$. Proc. Amer. Math. Soc. 103 (1988), 641–646. | DOI | MR
[8] N. V. Velichko: On spaces of closed subsets. Sibirskii Matem. Z. 16 (1975), 627–629.