Normal Vietoris implies compactness: a short proof
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 181-182
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.
One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.
Classification : 54B20, 54D30, 54E15
Keywords: hyperspaces; Vietoris topology; locally finite topology; Hausdorff metric; compactness; normality; countable compactness
@article{CMJ_2004_54_1_a14,
     author = {Maio, G. Di and Meccariello, E. and Naimpally, S.},
     title = {Normal {Vietoris} implies compactness: a short proof},
     journal = {Czechoslovak Mathematical Journal},
     pages = {181--182},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040229},
     zbl = {1049.54010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a14/}
}
TY  - JOUR
AU  - Maio, G. Di
AU  - Meccariello, E.
AU  - Naimpally, S.
TI  - Normal Vietoris implies compactness: a short proof
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 181
EP  - 182
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a14/
LA  - en
ID  - CMJ_2004_54_1_a14
ER  - 
%0 Journal Article
%A Maio, G. Di
%A Meccariello, E.
%A Naimpally, S.
%T Normal Vietoris implies compactness: a short proof
%J Czechoslovak Mathematical Journal
%D 2004
%P 181-182
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a14/
%G en
%F CMJ_2004_54_1_a14
Maio, G. Di; Meccariello, E.; Naimpally, S. Normal Vietoris implies compactness: a short proof. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 181-182. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a14/

[1] G. Beer: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, , 1993. | MR | Zbl

[2] A.  Di Concilio, S. A.  Naimpally and P. L.  Sharma: Proximal hypertopologies. Proceedings of the VI  Brasilian Topological Meeting, Campinas, Brazil (1988), Unpublished.

[3] R.  Engelking: General Topology. Helderman Verlag, Berlin, 1989, Revised and completed version. | MR | Zbl

[4] V.  M. Ivanova: On the theory of the space of subsets. Dokl. Akad. Nauk. SSSR 101 (1955), 601–603. | MR

[5] J.  Keesling: Normality and properties related to compactness in hyperspaces. Proc. Amer. Math. Soc. 24 (1970), 760–766. | DOI | MR | Zbl

[6] J.  Keesling: On the equivalence of normality and compactness in hyperspaces. Pacific J.  Math. 33 (1970), 657–667. | DOI | MR | Zbl

[7] S. A.  Naimpally and P. L.  Sharma: Fine uniformity and the locally finite hyperspace topology on  $2^X$. Proc. Amer. Math. Soc. 103 (1988), 641–646. | DOI | MR

[8] N. V.  Velichko: On spaces of closed subsets. Sibirskii Matem.  Z. 16 (1975), 627–629.