Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 161-180
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce a simple formula for conditional Wiener integrals over $C_0(\mathbb{B})$, the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on $C_0(\mathbb{B})$ in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral for functionals of the form \[ \exp \biggl \lbrace \int _0^T \theta (s, x(s))\mathrm{d}\eta (s) \biggr \rbrace \] which are of interest in Feynman integration theories and quantum mechanics.
In this paper, we introduce a simple formula for conditional Wiener integrals over $C_0(\mathbb{B})$, the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on $C_0(\mathbb{B})$ in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral for functionals of the form \[ \exp \biggl \lbrace \int _0^T \theta (s, x(s))\mathrm{d}\eta (s) \biggr \rbrace \] which are of interest in Feynman integration theories and quantum mechanics.
Classification : 28C20, 46G12, 81S40
Keywords: Banach algebra $S_{\mathbb{B}}^{\prime \prime }$; Banach space $S_{n, \mathbb{B}}^{\prime \prime }$; conditional Wiener integral; conditional Feynman integral; simple formula for conditional Wiener integrals
@article{CMJ_2004_54_1_a13,
     author = {Chang, Kun Soo and Cho, Dong Hyun and Yoo, Il},
     title = {Evaluation formulas for a conditional {Feynman} integral over {Wiener} paths in abstract {Wiener} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {161--180},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040228},
     zbl = {1047.28008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a13/}
}
TY  - JOUR
AU  - Chang, Kun Soo
AU  - Cho, Dong Hyun
AU  - Yoo, Il
TI  - Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 161
EP  - 180
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a13/
LA  - en
ID  - CMJ_2004_54_1_a13
ER  - 
%0 Journal Article
%A Chang, Kun Soo
%A Cho, Dong Hyun
%A Yoo, Il
%T Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space
%J Czechoslovak Mathematical Journal
%D 2004
%P 161-180
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a13/
%G en
%F CMJ_2004_54_1_a13
Chang, Kun Soo; Cho, Dong Hyun; Yoo, Il. Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 161-180. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a13/

[1] S. Albeverio and R.  Høegh-Krohn: Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics Vol.  523. Springer-Verlag, Berlin, 1976. | MR

[2] R. B. Ash: Real Analysis and Probability. Academic Press, New York, 1972. | MR

[3] R. H.  Cameron and D. A.  Storvick: Some Banach algebras of analytic Feynman integrable functionals. In: Analytic Functions, Kozubnik, 1979. Lecture Notes in Mathematics Vol.  798, Springer-Verlag, Berlin-New York, 1980, pp. 18–67. | MR

[4] K. S.  Chang and J. S.  Chang: Evaluation of some conditional Wiener integrals. Bull. Korean Math. Soc. 21 (1984), 99–106. | MR

[5] K. S.  Chang, G. W.  Johnson and D. L. Skoug: Functions in the Fresnel class. Proc. Amer. Math. Soc. 100 (1987), 309–318. | DOI | MR

[6] D. M. Chung: Scale-invariant measurability in abstract Wiener spaces. Pacific J.  Math. 130 (1987), 27–40. | DOI | MR | Zbl

[7] D. M.  Chung and D. L.  Skoug: Conditional analytic Feynman integrals and a related Schrödinger integral equation. SIAM. J.  Math. Anal. 20 (1989), 950–965. | DOI | MR

[8] D. L.  Cohn: Measure Theory. Birkhäuser-Verlag, Boston, 1980. | MR | Zbl

[9] M. D. Donsker and J. L.  Lions: Volterra variational equations, boundary value problems and function space integrals. Acta Math. 109 (1962), 147–228. | MR

[10] G. W. Johnson: An unsymmetric Fubini theorem. Amer. Math. Monthly 91 (1984), 131–133. | DOI | MR | Zbl

[11] G. W.  Johnson and M. L. Lapidus: Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus. Mem. Amer. Math. Soc. 62 (1986). | MR

[12] G.  Kallianpur and C. Bromley: Generalized Feynman integrals using analytic continuation in several complex variables. In: Stochastic Analysis and Applications, M. A.  Pinsky (ed.), Dekker, New York, 1984. | MR

[13] J. Kuelbs and R.  LePage: The law of the iterated logarithm for Brownian motion in a Banach space. Trans. Amer. Math. Soc. 185 (1973), 253–264. | DOI | MR

[14] H. H.  Kuo: Gaussian measures in Banach Spaces. Lecture Notes in Mathematics Vol.  463. Springer-Verlag, Berlin-New York, 1975. | MR

[15] W. J.  Padgett and R. L.  Taylor: Laws of Large Numbers for Normed Linear Spaces and Certain Fréchet Spaces. Lecture Notes in Mathematics Vol. 360. Springer-Verlag, Berlin-New York, 1973. | MR

[16] C.  Park and D. L.  Skoug: A simple formula for conditional Wiener integrals with applications. Pacific J.  Math. 135 (1988), 381–394. | DOI | MR

[17] K. S.  Ryu: The Wiener integral over paths in abstract Wiener space. J.  Korean Math. Soc. 29 (1992), 317–331. | MR | Zbl

[18] J.  Yeh: Inversion of conditional expectations. Pacific J.  Math. 52 (1974), 631–640. | DOI | MR | Zbl

[19] J.  Yeh: Inversion of conditional Wiener integrals. Pacific J.  Math. 59 (1975), 623–638. | DOI | MR | Zbl

[20] I. Yoo: The analytic Feynman integral over paths in abstract Wiener space. Comm. Korean Math. Soc. 10 (1995), 93–107. | MR | Zbl