Keywords: (disjoint; non-singular; singular; non-dense; dense; discrete) iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations
@article{CMJ_2004_54_1_a11,
author = {Ciepli\'nski, Krzysztof},
title = {The structure of disjoint iteration groups on the circle},
journal = {Czechoslovak Mathematical Journal},
pages = {131--153},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040226},
zbl = {1047.37024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a11/}
}
Ciepliński, Krzysztof. The structure of disjoint iteration groups on the circle. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 131-153. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a11/
[1] L. Alsedà, J. Llibre and M. Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5. World Scientific Publishing Co. Inc., River Edge, 1993. | MR
[2] M. Bajger: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106–121. | DOI | MR | Zbl
[3] M. Bajger and M. C. Zdun: On rational flows of continuous functions. Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265–276. | MR
[4] L. S. Block and W. A. Coppel: Dynamics in One Dimension. Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992. | MR
[5] N. Bourbaki: Éléments de mathématique. Topologie générale. Hermann, Paris, 1971. | MR | Zbl
[6] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363–383. | MR
[7] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle. Ann. Math. Sil. 13 (1999), 103–118. | MR
[8] K. Ciepliński: The rotation number of the composition of homeomorphisms. Rocznik Nauk.—Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83–87. | MR
[9] K. Ciepliński: Topological conjugacy of disjoint flows on the circle. Bull. Korean Math. Soc. 39 (2002), 333–346. | DOI | MR
[10] K. Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. | DOI | MR
[11] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai: Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, 1982. | MR
[12] Z. Nitecki: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. The M.I.T. Press Cambridge, Massachusetts-London, 1971. | MR | Zbl
[13] C. T. C. Wall: A Geometric Introduction to Topology. Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. | MR
[14] P. Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. | MR
[15] M. C. Zdun: On embedding of homeomorphisms of the circle in a continuous flow. Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218–231. | MR | Zbl
[16] M. C. Zdun: On the embeddability of commuting functions in a flow. Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201–212. | MR | Zbl
[17] M. C. Zdun: On the orbits of disjoint groups of continuous functions. Rad. Mat. 8 (1992/96), 95–104. | MR
[18] M. C. Zdun: The structure of iteration groups of continuous functions. Aequationes Math. 46 (1993), 19–37. | DOI | MR | Zbl
[19] M. C. Zdun: On some invariants of conjugacy of disjoint iteration groups. Results Math. 26 (1994), 403–410. | DOI | MR | Zbl