The structure of disjoint iteration groups on the circle
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 131-153
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle ${\mathbb{S}^1}$, that is, families ${\mathcal F}=\lbrace F^{v}\:{\mathbb{S}^1}\longrightarrow {\mathbb{S}^1}\; v\in V\rbrace $ of homeomorphisms such that \[ F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}},\quad v_1, v_2\in V, \] and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop {\mathrm card}V>1$) abelian group).
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle ${\mathbb{S}^1}$, that is, families ${\mathcal F}=\lbrace F^{v}\:{\mathbb{S}^1}\longrightarrow {\mathbb{S}^1}\; v\in V\rbrace $ of homeomorphisms such that \[ F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}},\quad v_1, v_2\in V, \] and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop {\mathrm card}V>1$) abelian group).
Classification : 20F28, 20F38, 30D05, 37B99, 37E10, 37E45, 39B12, 39B32, 39B72
Keywords: (disjoint; non-singular; singular; non-dense; dense; discrete) iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations
@article{CMJ_2004_54_1_a11,
     author = {Ciepli\'nski, Krzysztof},
     title = {The structure of disjoint iteration groups on the circle},
     journal = {Czechoslovak Mathematical Journal},
     pages = {131--153},
     year = {2004},
     volume = {54},
     number = {1},
     mrnumber = {2040226},
     zbl = {1047.37024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a11/}
}
TY  - JOUR
AU  - Ciepliński, Krzysztof
TI  - The structure of disjoint iteration groups on the circle
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 131
EP  - 153
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a11/
LA  - en
ID  - CMJ_2004_54_1_a11
ER  - 
%0 Journal Article
%A Ciepliński, Krzysztof
%T The structure of disjoint iteration groups on the circle
%J Czechoslovak Mathematical Journal
%D 2004
%P 131-153
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a11/
%G en
%F CMJ_2004_54_1_a11
Ciepliński, Krzysztof. The structure of disjoint iteration groups on the circle. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 131-153. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a11/

[1] L.  Alsedà, J.  Llibre and M.  Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5. World Scientific Publishing Co. Inc., River Edge, 1993. | MR

[2] M. Bajger: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106–121. | DOI | MR | Zbl

[3] M. Bajger and M. C.  Zdun: On rational flows of continuous functions. Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265–276. | MR

[4] L. S.  Block and W. A.  Coppel: Dynamics in One Dimension. Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992. | MR

[5] N.  Bourbaki: Éléments de mathématique. Topologie générale. Hermann, Paris, 1971. | MR | Zbl

[6] K.  Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363–383. | MR

[7] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle. Ann. Math. Sil. 13 (1999), 103–118. | MR

[8] K. Ciepliński: The rotation number of the composition of homeomorphisms. Rocznik Nauk.—Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83–87. | MR

[9] K.  Ciepliński: Topological conjugacy of disjoint flows on the circle. Bull. Korean Math. Soc. 39 (2002), 333–346. | DOI | MR

[10] K.  Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle. Internat. J.  Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. | DOI | MR

[11] I. P.  Cornfeld, S. V.  Fomin and Ya. G.  Sinai: Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, 1982. | MR

[12] Z.  Nitecki: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. The M.I.T. Press Cambridge, Massachusetts-London, 1971. | MR | Zbl

[13] C. T. C.  Wall: A Geometric Introduction to Topology. Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. | MR

[14] P.  Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. | MR

[15] M. C.  Zdun: On embedding of homeomorphisms of the circle in a continuous flow. Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218–231. | MR | Zbl

[16] M. C.  Zdun: On the embeddability of commuting functions in a flow. Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201–212. | MR | Zbl

[17] M. C.  Zdun: On the orbits of disjoint groups of continuous functions. Rad. Mat. 8 (1992/96), 95–104. | MR

[18] M. C.  Zdun: The structure of iteration groups of continuous functions. Aequationes Math. 46 (1993), 19–37. | DOI | MR | Zbl

[19] M. C.  Zdun: On some invariants of conjugacy of disjoint iteration groups. Results Math. 26 (1994), 403–410. | DOI | MR | Zbl