Keywords: $\pi $-domain; almost $\pi $-domain; $\pi $-ring; $d$-prime element
@article{CMJ_2004_54_1_a10,
author = {Jayaram, C.},
title = {Almost $\pi$-lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {119--130},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040225},
zbl = {1049.06012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a10/}
}
Jayaram, C. Almost $\pi$-lattices. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a10/
[1] F. Alarcon, D. D. Anderson and C. Jayaram: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1–26. | DOI | MR
[2] D. D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. | DOI | MR | Zbl
[3] D. D. Anderson, C. Jayaram and P. A. Phiri: Baer lattices. Acta. Sci. Math. (Szeged) 59 (1994), 61–74. | MR
[4] D. D. Anderson and C. Jayaram: Principal element lattices. Czechoslovak Math. J. 46(121) (1996), 99–109. | MR
[5] D. D. Anderson and E. W. Johnson: Dilworth’s principal elements. Algebra Universalis 36 (1996), 392–404. | DOI | MR
[6] R. P. Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. | DOI | MR | Zbl
[7] R. W. Gilmer: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. | MR | Zbl
[8] W. Heinzer and D. Lantz: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. | DOI | MR
[9] C. Jayaram and E. W. Johnson: Almost principal element lattices. Internat. J. Math. Math. Sci. 18 (1995), 535–538. | DOI | MR
[10] C. Jayaram and E. W. Johnson: Some results on almost principal element lattices. Period. Math. Hungar. 31 (1995), 33–42. | DOI | MR
[11] C. Jayaram and E. W. Johnson: $s$-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208. | DOI | MR
[12] C. Jayaram and E. W. Johnson: Dedekind lattices. Acta. Sci. Math. (Szeged) 63 (1997), 367–378. | MR
[13] C. Jayaram and E. W. Johnson: $\sigma $-elements in multiplicative lattices. Czechoslovak Math. J. 48(123) (1998), 641–651. | DOI | MR
[14] B. G. Kang: On the converse of a well known fact about Krull donains. J. Algebra 124 (1989), 284–299. | DOI | MR
[15] M. D. Larsen and P. J. McCarthy: Multiplicative Theory of Ideals. Academic Press, New York, 1971. | MR
[16] K. B. Levitz: A characterization of general ZPI-rings. Proc. Amer. Math. Soc. 32 (1972), 376–380. | MR
[17] P. J. McCarthy: Principal elements of lattices of ideals. Proc. Amer. Math. Soc. 30 (1971), 43–45. | DOI | MR | Zbl
[18] N. K. Thakare, C. S. Manjarekar and S. Maeda: Abstract spectral theory. II. Minimal characters and minimal spectrums of multiplicative lattices. Acta. Sci. Math. (Szeged) 52 (1988), 53–67. | MR