Keywords: strong digraph; directed distance; ternary relation; finite structure
@article{CMJ_2004_54_1_a0,
author = {Nebesk\'y, Ladislav},
title = {The directed geodetic structure of a strong digraph},
journal = {Czechoslovak Mathematical Journal},
pages = {1--8},
year = {2004},
volume = {54},
number = {1},
mrnumber = {2040215},
zbl = {1045.05039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a0/}
}
Nebeský, Ladislav. The directed geodetic structure of a strong digraph. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/CMJ_2004_54_1_a0/
[1] G. Chartrand and L. Lesniak: Graphs & Digraphs. Chapman & Hall, London, 1996. | MR
[2] H-D. Ebbinghaus and J. Flum: Finite Model Theory. Springer-Verlag, Berlin, 1995. | MR
[3] H. M. Mulder: The interval function of a graph. Math. Centre Tracts 132, Math Centre, Amsterdam, 1980. | MR | Zbl
[4] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44(119) (1994), 173–178. | MR
[5] L. Nebeský: Characterizing the interval function of a connected graph. Math. Bohem. 123 (1998), 137–144. | MR
[6] L. Nebeský: The interval function of a connected graph and a characterization of geodetic graphs. Math. Bohem. 126 (2001), 247–254. | MR
[7] L. Nebeský: The induced paths in a connected graph and a ternary relation determined by them. Math. Bohem. 127 (2002), 397–408. | MR