Projectability and splitting property of lattice ordered groups
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 907-915
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with the notions of projectability, spliting property and Dedekind completeness of lattice ordered groups, and with the relations between these notions.
In this paper we deal with the notions of projectability, spliting property and Dedekind completeness of lattice ordered groups, and with the relations between these notions.
Classification : 06F15, 20F60
Keywords: lattice ordered group; projectability; splitting property; Dedekind completeness
@article{CMJ_2003_53_4_a9,
     author = {Jakub{\'\i}k, J\'an},
     title = {Projectability and splitting property of lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {907--915},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018838},
     zbl = {1080.06026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a9/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Projectability and splitting property of lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 907
EP  - 915
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a9/
LA  - en
ID  - CMJ_2003_53_4_a9
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Projectability and splitting property of lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2003
%P 907-915
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a9/
%G en
%F CMJ_2003_53_4_a9
Jakubík, Ján. Projectability and splitting property of lattice ordered groups. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 907-915. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a9/

[1] M. Anderson, P. Conrad and O. Kenney: Splitting properties in archimedean $\ell $-groups. J. Austral. Math. Soc. 23 (1977), 247–256. | DOI | MR

[2] S. J. Bernau: Lateral and Dedekind completion of archimedean lattice groups. J. London Math. Soc. 12 (1976), 320–322. | DOI | MR | Zbl

[3] S. Bernau: Orthocompletion of lattice ordered groups. Proc. London Math. Soc. 16 (1966), 107–130. | MR

[4] P. F. Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444–480. | DOI | MR

[5] P. F. Conrad: The essential closure of an archimedean lattice group. Duke Math. J. 38 (1971), 151–160. | MR

[6] J. Jakubík: Splitting property of lattice ordered groups. Czechoslovak Math. J. 24 (1974), 257–269. | MR

[7] J. Jakubík: Strongly projectable lattice ordered groups. Czechoslovak Math. J. 26 (1976), 642–652. | MR

[8] J. Jakubík: Orthogonal hull of a strongly projectable lattice ordered group. Czechoslovak Math. J. 28 (1978), 484–504. | MR

[9] J. Jakubík: Maximal Dedekind completion of an abelian lattice ordered group. Czechoslovak Math. J. 28 (1978), 611–631. | MR

[10] J. Jakubík: Projectable kernel of a lattice ordered group. Universal Algebra and Applications. Banach Center Publ. 9 (1982), 105–112. | MR

[11] J. Jakubík: Lateral and Dedekind completion of a strongly projectable lattice ordered group. Czechoslovak Math. J. 47 (1997), 511–523. | DOI | MR

[12] J. Jakubík and M. Csontóová: Affine completeness of projectable lattice ordered groups. Czechoslovak Math. J. 48 (1998), 359–363. | DOI | MR

[13] J. Jakubík: Lateral completion of a projectable lattice ordered group. Czechoslovak Math. J. 50 (2000), 431–444. | DOI | MR

[14] A. V. Koldunov and G. Ya. Rotkovich: Archimedean lattice ordered groups with the splitting property. Czechoslovak Math. J. 37 (1987), 7–18. (Russian) | MR