Modules commuting (via Hom) with some colimits
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 891-905
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For every module $M$ we have a natural monomorphism \[ \Psi :\coprod _{i\in I}\mathop {\mathrm Hom}\nolimits _R(M,A_i)\rightarrow \mathop {\mathrm Hom}\nolimits _R\biggl (M,\coprod _{i\in I}A_i\biggr ) \] and we focus our attention on the case when $\Psi $ is also an epimorphism. Some other colimits are also considered.
For every module $M$ we have a natural monomorphism \[ \Psi :\coprod _{i\in I}\mathop {\mathrm Hom}\nolimits _R(M,A_i)\rightarrow \mathop {\mathrm Hom}\nolimits _R\biggl (M,\coprod _{i\in I}A_i\biggr ) \] and we focus our attention on the case when $\Psi $ is also an epimorphism. Some other colimits are also considered.
Classification : 16B99, 16D10, 16E30, 18A35
Keywords: module; colimit; finitely presented module
@article{CMJ_2003_53_4_a8,
     author = {Bashir, Robert El and Kepka, Tom\'a\v{s} and N\v{e}mec, Petr},
     title = {Modules commuting (via {Hom)} with some colimits},
     journal = {Czechoslovak Mathematical Journal},
     pages = {891--905},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018837},
     zbl = {1080.16504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a8/}
}
TY  - JOUR
AU  - Bashir, Robert El
AU  - Kepka, Tomáš
AU  - Němec, Petr
TI  - Modules commuting (via Hom) with some colimits
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 891
EP  - 905
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a8/
LA  - en
ID  - CMJ_2003_53_4_a8
ER  - 
%0 Journal Article
%A Bashir, Robert El
%A Kepka, Tomáš
%A Němec, Petr
%T Modules commuting (via Hom) with some colimits
%J Czechoslovak Mathematical Journal
%D 2003
%P 891-905
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a8/
%G en
%F CMJ_2003_53_4_a8
Bashir, Robert El; Kepka, Tomáš; Němec, Petr. Modules commuting (via Hom) with some colimits. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 891-905. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a8/

[1] H. Bass: Algebraic $K$-Theory. W. A. Benjamin, New York, 1968. | MR | Zbl

[2] R. Colpi and C. Menini: On the structure of $\ast $-modules. J. Algebra 158 (1993), 400–419. | MR

[3] R. Colpi and J. Trlifaj: Classes of generalized $\ast $-modules. Comm. Algebra 22 (1994), 3985–3995. | DOI | MR

[4] P. C. Eklof, K. R. Goodearl and J. Trlifaj: Dually slender modules and steady rings. Forum Math. 9 (1997), 61–74. | MR

[5] P. C. Eklof and A. H. Mekler: Almost Free Modules. North-Holland, New York, 1990. | MR

[6] R. El Bashir and T. Kepka: Modules commuting (via $\mathop {\mathrm Hom}\nolimits $) with some limits. Fund. Math. 155 (1998), 271–292. | MR

[7] P.  Freyd: Abelian Categories. New York, 1964. | Zbl

[8] L. Fuchs and L. Salce: Modules over Valuation Domains. Marcel Dekker, New York, 1985. | MR

[9] A. Gollová: $\sum $-compact modules and steady rings. Ph.D.  Thesis, Charles University, Prague, 1997.

[10] J. L. Gómez Pardo, G.  Militaru and C.  Nǎstǎsescu: When is ${\mathrm HOM}_R(M,-)$ equal to ${\mathrm Hom}_R(M,-)$ in the category $R-{\mathrm gr}$? Comm. Algebra 22 (1994), 3171–3181. | MR

[11] T. Head: Preservation of coproducts by ${\mathrm Hom}_R(M,-)$. Rocky Mountain  J.  Math. 2 (1972), 235–237. | DOI | MR

[12] T. Kepka: $\cap $-compact modules. Comment. Math. Univ. Carolin. 36 (1995), 423–426. | MR

[13] H. Lenzing: Endlichpräsentierbare Moduln. Arch. Math. 20 (1969), 262–266. | MR

[14] C. Menini and A. Orsatti: Representable equivalences between categories of modules and applications. Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. | MR

[15] B. Mitchell: Theory of Categories. Academic Press, New York-London, 1965. | MR | Zbl

[16] A. Orsatti and N. Rodinò: On the endomorphism ring of an infinite dimensional vector space. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 395–417. | MR

[17] R. Rentschler: Die Vertauschbarkeit des $\mathop {\mathrm Hom}\nolimits $-Funktors mit direkten Summen. Dissertation, Ludwig-Maximilian-Universität, München, 1967.

[18] R. Rentschler: Sur les modules  $M$ tels que $\mathop {\mathrm Hom}\nolimits (M,-)$ commute avec les sommes directes. C.  R.  Acad. Sci. Paris 268 (1969), 930–932. | MR

[19] P. Růžička, J.  Trlifaj and J.  Žemlička: Criteria for steadiness. Proc. Conf. Abelian Groups, Module Theory and Topology (Padova 1997), Marcel Dekker, New York, 1998, pp. 359–371. | MR

[20] J.  Trlifaj: Every $\ast $-module is finitely generated. J. Algebra 164 (1994), 392–398. | MR

[21] J. Trlifaj: Steady rings may contain large sets of orthogonal idempotents. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. | MR | Zbl

[22] J. Trlifaj: Modules over non-perfect rings. Advances in Algebra and Model Theory, Gordon and Breach, Philadelphia, 1996, pp. 471–492. | MR

[23] R. Wisbauer: Grundlagen der Modul- und Ringtheorie. Verlag R. Fischer, München, 1988. | MR | Zbl

[24] J. Žemlička and J. Trlifaj: Steady ideals and rings. Rend. Sem. Mat. Univ. Padova 98 (1997), . | MR

[25] J.  Žemlička: Structure of steady rings. Ph.D.  Thesis, Charles University, Prague, 1998.