Modules commuting (via Hom) with some colimits
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 891-905
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For every module $M$ we have a natural monomorphism \[ \Psi :\coprod _{i\in I}\mathop {\mathrm Hom}\nolimits _R(M,A_i)\rightarrow \mathop {\mathrm Hom}\nolimits _R\biggl (M,\coprod _{i\in I}A_i\biggr ) \] and we focus our attention on the case when $\Psi $ is also an epimorphism. Some other colimits are also considered.
For every module $M$ we have a natural monomorphism \[ \Psi :\coprod _{i\in I}\mathop {\mathrm Hom}\nolimits _R(M,A_i)\rightarrow \mathop {\mathrm Hom}\nolimits _R\biggl (M,\coprod _{i\in I}A_i\biggr ) \] and we focus our attention on the case when $\Psi $ is also an epimorphism. Some other colimits are also considered.
Classification :
16B99, 16D10, 16E30, 18A35
Keywords: module; colimit; finitely presented module
Keywords: module; colimit; finitely presented module
@article{CMJ_2003_53_4_a8,
author = {Bashir, Robert El and Kepka, Tom\'a\v{s} and N\v{e}mec, Petr},
title = {Modules commuting (via {Hom)} with some colimits},
journal = {Czechoslovak Mathematical Journal},
pages = {891--905},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018837},
zbl = {1080.16504},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a8/}
}
Bashir, Robert El; Kepka, Tomáš; Němec, Petr. Modules commuting (via Hom) with some colimits. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 891-905. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a8/