Keywords: optimal control; Galerkin method; nonlinear systems; identification problem; necessary condition
@article{CMJ_2003_53_4_a6,
author = {Park, Jong Yeoul and Kang, Yong Han and Jung, Il Hyo},
title = {Optimization and identification of nonlinear uncertain systems},
journal = {Czechoslovak Mathematical Journal},
pages = {861--879},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018835},
zbl = {1080.49500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/}
}
TY - JOUR AU - Park, Jong Yeoul AU - Kang, Yong Han AU - Jung, Il Hyo TI - Optimization and identification of nonlinear uncertain systems JO - Czechoslovak Mathematical Journal PY - 2003 SP - 861 EP - 879 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/ LA - en ID - CMJ_2003_53_4_a6 ER -
Park, Jong Yeoul; Kang, Yong Han; Jung, Il Hyo. Optimization and identification of nonlinear uncertain systems. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 861-879. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/
[1] N. U. Ahmed: Optimization and Identification of Systems Governed by Evolution Equations on Banach Space. Pitman Res. Notes Math. Ser. 184. Longman, Harlow, 1988. | MR
[2] N. U. Ahmed: Optimal control of infinite-dimensional systems governed by functional differential inclusions. Disc. Math. Diff. Inclusions 15 (1995), 75–94. | MR | Zbl
[3] N. U. Ahmed and K. L. Teo: Optimal Control of Distributed Parameter Systems. North-Holland, Amsterdam, 1981. | MR
[4] N. U. Ahmed and X. Xing: Nonlinear uncertain systems and necessary conditions of optimality. SIAM J. Control Optim. 35 (1997), 1755–1772. | DOI | MR
[5] V. Barbu: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic press, INC, Boston-Sandiego-New York-London-Sydney-Tokyo-Toronto, 1993. | MR | Zbl
[6] R. Dautray and J. L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5. Springer-Verlag, Berlin-Heidelberg, 1992. | MR
[7] N. U. Papageorgionu: Nonlinear Volterra integrodifferential evolution inclusions and optimal control. Kodai Math. J. 14 (1991), 254–280. | DOI | MR
[8] N. U. Papageorgionu: Identification of parameters in systems governed by nonlinear evolution equations. Publ. Math. Debrecen 46 (1995), 215–237. | MR
[9] N. U. Papageorgionu: On the optimal control of strongly nonlinear evolution equations. J. Math. Anal. Appl. 164 (1992), 83–103. | DOI | MR
[10] J. Y. Park, J. H. Ha and H. K. Han: Identification problem for damping parameters in linear damped second order systems. J. Korean Math. Soc. 34 (1997), 895–909. | MR
[11] J. Y. Park, Y. H. Kang and I. H. Jung: Optimization and identification of nonlinear systems on Banach space. Indian J. Pure Appl. 32 (2001), 633–647. | MR
[12] J. Y. Park, Y. H. Kang and M. J. Lee: Optimal control problem for the nonlinear hyperbolic systems. RIMS Kokyuroku 1187 (2001), 27–36. | MR
[13] E. Zeidler: Nonlinear functional analysis and its applications, II. Springer-Verlag, New York, 1990. | MR | Zbl