Optimization and identification of nonlinear uncertain systems
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 861-879
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider the optimal control of both operators and parameters for uncertain systems. For the optimal control and identification problem, we show existence of an optimal solution and present necessary conditions of optimality.
In this paper we consider the optimal control of both operators and parameters for uncertain systems. For the optimal control and identification problem, we show existence of an optimal solution and present necessary conditions of optimality.
Classification : 34G20, 49J20, 49K20, 49K24, 49M30, 93B30
Keywords: optimal control; Galerkin method; nonlinear systems; identification problem; necessary condition
@article{CMJ_2003_53_4_a6,
     author = {Park, Jong Yeoul and Kang, Yong Han and Jung, Il Hyo},
     title = {Optimization and identification of nonlinear uncertain systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {861--879},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018835},
     zbl = {1080.49500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/}
}
TY  - JOUR
AU  - Park, Jong Yeoul
AU  - Kang, Yong Han
AU  - Jung, Il Hyo
TI  - Optimization and identification of nonlinear uncertain systems
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 861
EP  - 879
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/
LA  - en
ID  - CMJ_2003_53_4_a6
ER  - 
%0 Journal Article
%A Park, Jong Yeoul
%A Kang, Yong Han
%A Jung, Il Hyo
%T Optimization and identification of nonlinear uncertain systems
%J Czechoslovak Mathematical Journal
%D 2003
%P 861-879
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/
%G en
%F CMJ_2003_53_4_a6
Park, Jong Yeoul; Kang, Yong Han; Jung, Il Hyo. Optimization and identification of nonlinear uncertain systems. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 861-879. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a6/

[1] N. U.  Ahmed: Optimization and Identification of Systems Governed by Evolution Equations on Banach Space. Pitman Res. Notes Math. Ser. 184. Longman, Harlow, 1988. | MR

[2] N. U.  Ahmed: Optimal control of infinite-dimensional systems governed by functional differential inclusions. Disc. Math. Diff. Inclusions  15 (1995), 75–94. | MR | Zbl

[3] N. U.  Ahmed and K. L. Teo: Optimal Control of Distributed Parameter Systems. North-Holland, Amsterdam, 1981. | MR

[4] N. U.  Ahmed and X.  Xing: Nonlinear uncertain systems and necessary conditions of optimality. SIAM J.  Control Optim. 35 (1997), 1755–1772. | DOI | MR

[5] V.  Barbu: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic press, INC, Boston-Sandiego-New York-London-Sydney-Tokyo-Toronto, 1993. | MR | Zbl

[6] R.  Dautray and J. L.  Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5. Springer-Verlag, Berlin-Heidelberg, 1992. | MR

[7] N. U.  Papageorgionu: Nonlinear Volterra integrodifferential evolution inclusions and optimal control. Kodai Math.  J. 14 (1991), 254–280. | DOI | MR

[8] N. U.  Papageorgionu: Identification of parameters in systems governed by nonlinear evolution equations. Publ. Math. Debrecen 46 (1995), 215–237. | MR

[9] N. U.  Papageorgionu: On the optimal control of strongly nonlinear evolution equations. J.  Math. Anal. Appl. 164 (1992), 83–103. | DOI | MR

[10] J. Y.  Park, J. H.  Ha and H. K.  Han: Identification problem for damping parameters in linear damped second order systems. J.  Korean Math. Soc. 34 (1997), 895–909. | MR

[11] J. Y.  Park, Y. H. Kang and I. H.  Jung: Optimization and identification of nonlinear systems on Banach space. Indian J.  Pure Appl. 32 (2001), 633–647. | MR

[12] J. Y.  Park, Y. H.  Kang and M. J.  Lee: Optimal control problem for the nonlinear hyperbolic systems. RIMS Kokyuroku 1187 (2001), 27–36. | MR

[13] E.  Zeidler: Nonlinear functional analysis and its applications, II. Springer-Verlag, New York, 1990. | MR | Zbl