@article{CMJ_2003_53_4_a5,
author = {Bernu\'es, Julio and Pascual, Javier},
title = {On total incomparability of mixed {Tsirelson} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {841--859},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018834},
zbl = {1080.46507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a5/}
}
Bernués, Julio; Pascual, Javier. On total incomparability of mixed Tsirelson spaces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 841-859. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a5/
[1] S. A. Argyros and I. Deliyanni: Banach spaces of the type of Tsirelson. Preprint (1992).
[2] S. A. Argyros and I. Deliyanni: Examples of asymptotic $l^1$ Banach spaces. Trans. Amer. Math. Soc. 349 (1997), 973–995. | DOI | MR
[3] Bellenot: Tsirelson superspaces and $l_p$. J. Funct. Anal. 69 (1986), 207–228. | DOI | MR
[4] J. Bernués and I. Deliyanni: Families of finite subsets of $\mathbb{N}$ of low complexity and Tsirelson type spaces. Math. Nach. 222 (2001), 15–29. | DOI | MR
[5] J. Bernués and Th. Schlumprecht: El problema de la distorsión y el problema de la base incondicional. Colloquium del departamento de análisis, Universidad Complutense, Sección 1, Vol. 33, 1995.
[6] P. G. Casazza and T. Shura: Tsirelson’s Space. LNM 1363, Springer-Verlag, Berlin, 1989. | MR
[7] T. Figiel and W. B. Johnson: A uniformly convex Banach space which contains no $l_p$. Compositio Math. 29 (1974), 179–190. | MR
[8] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces I, II. Springer-Verlag, New York, 1977. | MR
[9] A. Manoussakis: On the structure of a certain class of mixed Tsirelson spaces. Positivity 5 (2001), 193–238. | DOI | MR | Zbl
[10] E. Odell and T. Schlumprecht: A Banach space block finitely universal for monotone basis. Trans. Amer. Math. Soc. 352 (2000), 1859–1888. | DOI | MR
[11] Th. Schlumprecht: An arbitrarily distortable Banach space. Israel J. Math. 76 (1991), 81–95. | DOI | MR | Zbl
[12] B. S. Tsirelson: Not every Banach space contains an embedding of $l_p$ or $c_0$. Funct. Anal. Appl. 8 (1974), 138–141. | DOI
[13] L. Tzafriri: On the type and cotype of Banach spaces. Israel J. Math. 32 (1979), 32–38. | DOI | MR | Zbl