On total incomparability of mixed Tsirelson spaces
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 841-859
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give criteria of total incomparability for certain classes of mixed Tsirelson spaces. We show that spaces of the form $T[(\mathcal M_k,\theta _k)_{k =1}^{l}]$ with index $i(\mathcal M_k)$ finite are either $c_0$ or $\ell _p$ saturated for some $p$ and we characterize when any two spaces of such a form are totally incomparable in terms of the index $i(\mathcal M_k)$ and the parameter $\theta _k$. Also, we give sufficient conditions of total incomparability for a particular class of spaces of the form $T[(\mathcal A_k,\theta _k)_{k = 1}^\infty ]$ in terms of the asymptotic behaviour of the sequence $\Bigl \Vert \sum _{i=1}^n e_i\Bigr \Vert $ where $(e_i)$ is the canonical basis.
We give criteria of total incomparability for certain classes of mixed Tsirelson spaces. We show that spaces of the form $T[(\mathcal M_k,\theta _k)_{k =1}^{l}]$ with index $i(\mathcal M_k)$ finite are either $c_0$ or $\ell _p$ saturated for some $p$ and we characterize when any two spaces of such a form are totally incomparable in terms of the index $i(\mathcal M_k)$ and the parameter $\theta _k$. Also, we give sufficient conditions of total incomparability for a particular class of spaces of the form $T[(\mathcal A_k,\theta _k)_{k = 1}^\infty ]$ in terms of the asymptotic behaviour of the sequence $\Bigl \Vert \sum _{i=1}^n e_i\Bigr \Vert $ where $(e_i)$ is the canonical basis.
Classification : 46B03, 46B20
Keywords: mixed Tsirelson spaces; totally incomparable spaces
@article{CMJ_2003_53_4_a5,
     author = {Bernu\'es, Julio and Pascual, Javier},
     title = {On total incomparability of mixed {Tsirelson} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {841--859},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018834},
     zbl = {1080.46507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a5/}
}
TY  - JOUR
AU  - Bernués, Julio
AU  - Pascual, Javier
TI  - On total incomparability of mixed Tsirelson spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 841
EP  - 859
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a5/
LA  - en
ID  - CMJ_2003_53_4_a5
ER  - 
%0 Journal Article
%A Bernués, Julio
%A Pascual, Javier
%T On total incomparability of mixed Tsirelson spaces
%J Czechoslovak Mathematical Journal
%D 2003
%P 841-859
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a5/
%G en
%F CMJ_2003_53_4_a5
Bernués, Julio; Pascual, Javier. On total incomparability of mixed Tsirelson spaces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 841-859. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a5/

[1] S. A.  Argyros and I.  Deliyanni: Banach spaces of the type of Tsirelson. Preprint (1992).

[2] S. A.  Argyros and I.  Deliyanni: Examples of asymptotic $l^1$ Banach spaces. Trans. Amer. Math. Soc. 349 (1997), 973–995. | DOI | MR

[3] Bellenot: Tsirelson superspaces and $l_p$. J. Funct. Anal. 69 (1986), 207–228. | DOI | MR

[4] J.  Bernués and I.  Deliyanni: Families of finite subsets of  $\mathbb{N}$ of low complexity and Tsirelson type spaces. Math. Nach. 222 (2001), 15–29. | DOI | MR

[5] J.  Bernués and Th.  Schlumprecht: El problema de la distorsión y el problema de la base incondicional. Colloquium del departamento de análisis, Universidad Complutense, Sección 1, Vol. 33, 1995.

[6] P. G.  Casazza and T.  Shura: Tsirelson’s Space. LNM 1363, Springer-Verlag, Berlin, 1989. | MR

[7] T.  Figiel and W. B. Johnson: A uniformly convex Banach space which contains no $l_p$. Compositio Math. 29 (1974), 179–190. | MR

[8] J.  Lindenstrauss and L.  Tzafriri: Classical Banach Spaces I, II. Springer-Verlag, New York, 1977. | MR

[9] A.  Manoussakis: On the structure of a certain class of mixed Tsirelson spaces. Positivity 5 (2001), 193–238. | DOI | MR | Zbl

[10] E.  Odell and T.  Schlumprecht: A Banach space block finitely universal for monotone basis. Trans. Amer. Math. Soc. 352 (2000), 1859–1888. | DOI | MR

[11] Th.  Schlumprecht: An arbitrarily distortable Banach space. Israel J. Math. 76 (1991), 81–95. | DOI | MR | Zbl

[12] B. S. Tsirelson: Not every Banach space contains an embedding of  $l_p$ or $c_0$. Funct. Anal. Appl. 8 (1974), 138–141. | DOI

[13] L.  Tzafriri: On the type and cotype of Banach spaces. Israel J. Math. 32 (1979), 32–38. | DOI | MR | Zbl