Keywords: resolving set; basis; dimension; connected resolving set; connected resolving number
@article{CMJ_2003_53_4_a4,
author = {Saenpholphat, Varaporn and Zhang, Ping},
title = {Connected resolvability of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {827--840},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018833},
zbl = {1080.05507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a4/}
}
Saenpholphat, Varaporn; Zhang, Ping. Connected resolvability of graphs. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 827-840. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a4/
[1] P. Buczkowski, G. Chartrand, C. Poisson and P. Zhang: On $k$-dimensional graphs and their bases. Period. Math. Hungar. 46 (2003), 25–36. | DOI | MR
[2] G. Chartrand, L. Eroh, M. Johnson and O. Oellermann: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000), 99–113. | DOI | MR
[3] G. Chartrand and L. Lesniak: Graphs $\&$ Digraphs. Third edition. Chapman $\&$ Hall, New York, 1996. | MR
[4] G. Chartrand, C. Poisson and P. Zhang: Resolvability and the upper dimension of graphs. Inter. J. Comput. Math. Appl. 39 (2000), 19–28. | MR
[5] G. Chartrand, M. Raines and P. Zhang: The directed distance dimension of oriented graphs. Math. Bohem. 125 (2000), 155–168. | MR
[6] M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979. | MR
[7] F. Harary and R. A. Melter: On the metric dimension of a graph. Ars Combin. 2 (1976), 191–195. | MR
[8] M. A. Johnson: Browsable structure-activity datasets. Submitted.
[9] P. J. Slater: Leaves of trees. Congr. Numer. 14 (1975), 549–559. | MR | Zbl
[10] P. J. Slater: Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988), 445–455. | MR