On oscillation of solutions of forced nonlinear neutral differential equations of higher order
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 805-825
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, necessary and sufficient conditions are obtained for every bounded solution of \[ [y (t) - p (t) y (t - \tau )]^{(n)} + Q (t) G \bigl (y (t - \sigma )\bigr ) = f (t), \quad t \ge 0, \qquad \mathrm{(*)}\] to oscillate or tend to zero as $t \rightarrow \infty $ for different ranges of $p (t)$. It is shown, under some stronger conditions, that every solution of $(*)$ oscillates or tends to zero as $t \rightarrow \infty $. Our results hold for linear, a class of superlinear and other nonlinear equations and answer a conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and generalize some known results.
In this paper, necessary and sufficient conditions are obtained for every bounded solution of \[ [y (t) - p (t) y (t - \tau )]^{(n)} + Q (t) G \bigl (y (t - \sigma )\bigr ) = f (t), \quad t \ge 0, \qquad \mathrm{(*)}\] to oscillate or tend to zero as $t \rightarrow \infty $ for different ranges of $p (t)$. It is shown, under some stronger conditions, that every solution of $(*)$ oscillates or tends to zero as $t \rightarrow \infty $. Our results hold for linear, a class of superlinear and other nonlinear equations and answer a conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and generalize some known results.
Classification : 34C10, 34C15, 34K11, 34K25, 34K40
Keywords: oscillation; nonoscillation; neutral equations; asymptotic behaviour
@article{CMJ_2003_53_4_a3,
     author = {Parhi, N. and Rath, R. N.},
     title = {On oscillation of solutions of forced nonlinear neutral differential equations of higher order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {805--825},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018832},
     zbl = {1080.34522},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a3/}
}
TY  - JOUR
AU  - Parhi, N.
AU  - Rath, R. N.
TI  - On oscillation of solutions of forced nonlinear neutral differential equations of higher order
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 805
EP  - 825
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a3/
LA  - en
ID  - CMJ_2003_53_4_a3
ER  - 
%0 Journal Article
%A Parhi, N.
%A Rath, R. N.
%T On oscillation of solutions of forced nonlinear neutral differential equations of higher order
%J Czechoslovak Mathematical Journal
%D 2003
%P 805-825
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a3/
%G en
%F CMJ_2003_53_4_a3
Parhi, N.; Rath, R. N. On oscillation of solutions of forced nonlinear neutral differential equations of higher order. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 805-825. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a3/

[1] Ming-Po-Chen, Z. C.  Wang, J. S.  Yu and B. G.  Zhang: Oscillation and asymptotic behaviour of higher order neutral differential equations. Bull. Inst. Math. Acad. Sinica 22 (1994), 203–217. | MR

[2] Q.  Chuanxi and G.  Ladas: Oscillation of higher order neutral differential equations with variable coefficients. Math. Nachr. 150 (1991), 15–24. | DOI | MR

[3] D. A.  Georgiou and C.  Qian: Oscillation criteria in neutral equations of $n$th order with variable coefficients. Internat. J.  Math. Math. Sci. 14 (1991), 689–696. | DOI | MR

[4] K.  Gopalsamy, B. S.  Lalli and B. G.  Zhang: Oscillation in odd order neutral differential equations. Czechoslovak Math.  J. 42 (1992), 313–323. | MR

[5] K.  Gopalsamy, S. R.  Grace and B. S.  Lalli: Oscillation of even order neutral differential equations. Indian J.  Math. 35 (1993), 9–25. | MR

[6] S. R.  Grace: On the oscillation of certain forced functional differential equation. J.  Math. Anal. Appl. 202 (1996), 555–577. | DOI | MR

[7] I.  Gyori and G.  Ladas: Oscialltion Theory of Delay-Differential Equations with Applications. Clarendon Press, Oxford, 1991. | MR

[8] T. H.  Hildebrandt: Introduction to the Theory of Integration. Academic Press, New York, 1963. | MR | Zbl

[9] I. T.  Kiguradze: On the oscillation of solutions of the equation $\frac{{\mathrm d}^m u}{{\mathrm d}t^m } + a(t)u^m u = 0$. Mat. Sb. 65 (1964), 172–187. | MR

[10] G.  Ladas and Y. G.  Sficas: Oscillations of higher order neutral equations. Austral. Math. Soc. Ser.  B 27 (1986), 502–511. | DOI | MR

[11] G.  Ladas, C.  Qian and J.  Yan: Oscillations of higher order neutral differential equations. Portugal. Math. 48 (1991), 291–307. | MR

[12] G. S.  Ladde, V.  Lakshmikantham and B. G.  Zhang: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker INC., New York, 1987. | MR

[13] X. Z.  Liu, J. S.  Yu and B. G.  Zhang: Oscillation and nonoscillation for a class of neutral differential equations. Differential Equations Dynam. Systems 1 (1993), 197–204. | MR

[14] N.  Parhi and P. K.  Mohanty: Oscillation of solutions of forced neutral differential equations of $n$-th order. Czechoslovak Math.  J. 45 (1995), 413–433. | MR

[15] N.  Parhi and P. K.  Mohanty: Maintenance of oscillation of neutral differential equations under the effect of a forcing term. Indian J.  Pure Appl. Math. 26 (1995), 909–919. | MR

[16] N.  Parhi and P. K.  Mohanty: Oscillatory behaviour of solutions of forced neutral differential equations. Ann. Polon. Math. 65 (1996), 1–10. | DOI | MR

[17] N.  Parhi and P. K.  Mohanty: Oscillations of neutral differential equations of higher order. Bull. Inst. Math. Acad. Sinica 24 (1996), 139–150. | MR

[18] N.  Parhi: Oscillation of higher order differential equations of neutral type. Czechoslovak Math.  J. 50 (2000), 155–173. | DOI

[19] N.  Parhi and R. N.  Rath: On oscillation criteria for a forced neutral differential equation. Bull. Inst. Math. Acad. Sinica 28 (2000), 59–70. | MR

[20] N.  Parhi and R. N.  Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients. J.  Math. Anal. Appl. 256 (2001), 525–541. | DOI | MR

[21] N. Parhi and R. N.  Rath: On oscillation and asymptotic behaviour of solutions of forced first order neutral differential equations. Proc. Indian. Acad. Sci. (Math. Sci.), Vol.  111, 2001, pp. 337–350. | MR

[22] H. L.  Royden: Real Analysis. 3rd edition, MacMillan Publ. Co., New York, 1989. | MR

[23] J. H.  Shen: New oscillation criteria for odd order neutral equations. J.  Math. Anal. Appl. 201 (1996), 387–395. | DOI | MR | Zbl

[24] D.  Tang: Oscillation of higher order nonlinear neutral functional differential equation. Ann. Differential Equations 12 (1996), 83–88. | MR | Zbl

[25] J. S.  Yu, Z. C.  Wang and B. G.  Zhang: Oscillation of higher order neutral differential equations. Rocky Mountain J.  Math (to appear). | MR

[26] B. G.  Zhang and K.  Gopalsam: Oscillations and nonoscillations in higher order neutral equations. J.  Math. Phys. Sci. 25 (1991), 152–165.