Keywords: pseudo $MV$-algebras; lattice ordered group; unital lattice ordered group; variety
@article{CMJ_2003_53_4_a19,
author = {Jakub{\'\i}k, J\'an},
title = {On varieties of pseudo $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1031--1040},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018848},
zbl = {1080.06015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a19/}
}
Jakubík, Ján. On varieties of pseudo $MV$-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1031-1040. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a19/
[1] R. Cignoli, M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000. | MR
[2] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. (Ser. A) 72 (2002), 427–445. | DOI | MR
[3] A. Dvurečenskij: States on pseudo $MV$-algebras. Studia Logica (to appear). | MR
[4] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, Buchurest, Romania, 1999, pp. 961–968. | MR
[5] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95–135. | MR
[6] J. Jakubík: Subdirect product decompositions of $MV$-algebras. Czechoslovak Math. J. 49 (1999), 163–173. | DOI | MR
[7] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142. | MR
[8] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR
[9] J. Rachůnek: Prime spectra of non-commutative generalizations of $MV$-algebras. (Submitted).