On varieties of pseudo $MV$-algebras
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1031-1040 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the relation between the lattice of varieties of pseudo $MV$-algebras and the lattice of varieties of lattice ordered groups.
In this paper we investigate the relation between the lattice of varieties of pseudo $MV$-algebras and the lattice of varieties of lattice ordered groups.
Classification : 06D35, 06F15, 08B15
Keywords: pseudo $MV$-algebras; lattice ordered group; unital lattice ordered group; variety
@article{CMJ_2003_53_4_a19,
     author = {Jakub{\'\i}k, J\'an},
     title = {On varieties of pseudo $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1031--1040},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018848},
     zbl = {1080.06015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a19/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On varieties of pseudo $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 1031
EP  - 1040
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a19/
LA  - en
ID  - CMJ_2003_53_4_a19
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On varieties of pseudo $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2003
%P 1031-1040
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a19/
%G en
%F CMJ_2003_53_4_a19
Jakubík, Ján. On varieties of pseudo $MV$-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1031-1040. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a19/

[1] R.  Cignoli, M. I.  D’Ottaviano and D.  Mundici: Algebraic Foundations of many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol.  7, Kluwer Academic Publishers, Dordrecht, 2000. | MR

[2] A.  Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J.  Austral. Math. Soc. (Ser.  A) 72 (2002), 427–445. | DOI | MR

[3] A.  Dvurečenskij: States on pseudo $MV$-algebras. Studia Logica (to appear). | MR

[4] G.  Georgescu and A.  Iorgulescu: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, Buchurest, Romania, 1999, pp. 961–968. | MR

[5] G.  Georgescu and A.  Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C.  Moisil) 6 (2001), 95–135. | MR

[6] J.  Jakubík: Subdirect product decompositions of $MV$-algebras. Czechoslovak Math.  J. 49 (1999), 163–173. | DOI | MR

[7] J.  Jakubík: Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142. | MR

[8] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR

[9] J.  Rachůnek: Prime spectra of non-commutative generalizations of $MV$-algebras. (Submitted).