Contact elements on fibered manifolds
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1017-1030
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
Classification : 53A55, 58A20
Keywords: jet of fibered manifold morphism; contact element; Weil bundle; natural operator
@article{CMJ_2003_53_4_a18,
     author = {Kol\'a\v{r}, Ivan and Mikulski, W{\l}odzimierz M.},
     title = {Contact elements on fibered manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1017--1030},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018847},
     zbl = {1080.58002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a18/}
}
TY  - JOUR
AU  - Kolář, Ivan
AU  - Mikulski, Włodzimierz M.
TI  - Contact elements on fibered manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 1017
EP  - 1030
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a18/
LA  - en
ID  - CMJ_2003_53_4_a18
ER  - 
%0 Journal Article
%A Kolář, Ivan
%A Mikulski, Włodzimierz M.
%T Contact elements on fibered manifolds
%J Czechoslovak Mathematical Journal
%D 2003
%P 1017-1030
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a18/
%G en
%F CMJ_2003_53_4_a18
Kolář, Ivan; Mikulski, Włodzimierz M. Contact elements on fibered manifolds. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1017-1030. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a18/

[1] R. Alonso: Jet manifold associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195–199. | MR | Zbl

[2] A. Cabras and I. Kolář: Prolongation of projectable tangent valued forms. To appear in Rendiconti Palermo. | MR

[3] M. Doupovec and I. Kolář: On the jets of fibered manifold morphisms. Cahiers Topo. Géom. Diff. Catégoriques XL (1999), 21–30. | MR

[4] C. Ehresmann: Oeuvres complètes et commentées. Parties I-A et I-2. Cahiers Topo. Géom. Diff. XXIV (1983).

[5] I. Kolář: Affine structure on Weil bundles. Nagoya Math. J. 158 (2000), 99–106. | DOI | MR

[6] I. Kolář: Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolin. 27 (1986), 723–729. | MR

[7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR

[8] I. Kolář and W. M. Mikulski: Natural lifting of connections to vertical bundles. Supplemento ai Rendiconti del Circolo Mat. di Palermo, Serie II 63 (2000), 97–102. | MR

[9] W. M. Mikulski: The Natural operators lifting 1-forms on manifolds to the bundles of $A$-velocities. Mh. Math. 119 (1995), 63–77. | DOI | MR | Zbl

[10] W. M. Mikulski: Product preserving bundle functors on fibered manifolds. Arch. Math. (Brno) 32 (1996), 307–316. | MR | Zbl

[11] J. Muñoz, F. J. Muriel and J. Rodríguez: Weil bundles and jet spaces. Czechoslovak Math. J. 50 (2000), 721–748. | DOI | MR

[12] J. Tomáš: Natural operators transforming projectable vector fields to products preserving bundles. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 59 (1999), 181–187. | MR

[13] A. Weil: Théorie des points proches sur les variétés différentielles. Collogue de C.N.R.S, Strasbourg, 1953, pp. 111–117. | MR