Keywords: BCK-algebra; deductive system; annihilator; pseudocomplement
@article{CMJ_2003_53_4_a16,
author = {Hala\v{s}, Radom{\'\i}r},
title = {Annihilators in {BCK-algebras}},
journal = {Czechoslovak Mathematical Journal},
pages = {1001--1007},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018845},
zbl = {1080.06035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a16/}
}
Halaš, Radomír. Annihilators in BCK-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1001-1007. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a16/
[1] H. A. S. Abujabal, M. A. Obaid and M. Aslam: On annihilators of BCK-algebras. Czechoslovak Math. J. 45(120) (1995), 727–735. | MR
[2] W. J. Blok and D. Pigozzi: Algebraizable Logics. Memoirs of the American Math. Soc., No 396, Providence, Rhode Island, 1989. | MR
[3] I. Chajda: The lattice of deductive systems on Hilbert algebras. Southeast Asian Bull. Math., to appear. | MR | Zbl
[4] I. Chajda and R. Halaš: Stabilizers in Hilbert algebras. Multiple Valued Logic 8 (2002), 139–148. | MR
[5] A. Diego: Sur les algébres de Hilbert. Collection de Logique Math. Ser. A (Ed. Hermann) 21 (1967), 177–198.
[6] W. A. Dudek: On ideals and congruences in BCC-algebras. Czechoslovak Math. J (to appear). | MR | Zbl
[7] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japon. 23 (1978), 1–26. | MR
[8] K. Iséki and S. Tanaka: Ideal theory of BCK-algebras. Math. Japon. 21 (1976), 351–366. | MR
[9] C. A. Meredith and A. N. Prior: Investigations into implicational S5. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 10 (1964), 203–220. | MR