Annihilators in BCK-algebras
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1001-1007
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra $\mathcal A$. We prove that annihilators of deductive systems of BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice $\mathcal D (A)$ of all deductive systems on $\mathcal A$. Moreover, relative annihilators of $C\in \mathcal D (A)$ with respect to $B \in \mathcal D (A)$ are introduced and serve as relative pseudocomplements of $C$ w.r.t. $B$ in $\mathcal D (A)$.
We introduce the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra $\mathcal A$. We prove that annihilators of deductive systems of BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice $\mathcal D (A)$ of all deductive systems on $\mathcal A$. Moreover, relative annihilators of $C\in \mathcal D (A)$ with respect to $B \in \mathcal D (A)$ are introduced and serve as relative pseudocomplements of $C$ w.r.t. $B$ in $\mathcal D (A)$.
Classification : 03B60, 03G25, 06F35, 08A99
Keywords: BCK-algebra; deductive system; annihilator; pseudocomplement
@article{CMJ_2003_53_4_a16,
     author = {Hala\v{s}, Radom{\'\i}r},
     title = {Annihilators in {BCK-algebras}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1001--1007},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018845},
     zbl = {1080.06035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a16/}
}
TY  - JOUR
AU  - Halaš, Radomír
TI  - Annihilators in BCK-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 1001
EP  - 1007
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a16/
LA  - en
ID  - CMJ_2003_53_4_a16
ER  - 
%0 Journal Article
%A Halaš, Radomír
%T Annihilators in BCK-algebras
%J Czechoslovak Mathematical Journal
%D 2003
%P 1001-1007
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a16/
%G en
%F CMJ_2003_53_4_a16
Halaš, Radomír. Annihilators in BCK-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1001-1007. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a16/

[1] H. A. S. Abujabal, M. A. Obaid and M. Aslam: On annihilators of BCK-algebras. Czechoslovak Math. J. 45(120) (1995), 727–735. | MR

[2] W. J. Blok and D. Pigozzi: Algebraizable Logics. Memoirs of the American Math. Soc., No 396, Providence, Rhode Island, 1989. | MR

[3] I. Chajda: The lattice of deductive systems on Hilbert algebras. Southeast Asian Bull. Math., to appear. | MR | Zbl

[4] I. Chajda and R. Halaš: Stabilizers in Hilbert algebras. Multiple Valued Logic 8 (2002), 139–148. | MR

[5] A. Diego: Sur les algébres de Hilbert. Collection de Logique Math. Ser. A (Ed. Hermann) 21 (1967), 177–198.

[6] W. A. Dudek: On ideals and congruences in BCC-algebras. Czechoslovak Math. J (to appear). | MR | Zbl

[7] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japon. 23 (1978), 1–26. | MR

[8] K. Iséki and S. Tanaka: Ideal theory of BCK-algebras. Math. Japon. 21 (1976), 351–366. | MR

[9] C. A. Meredith and A. N. Prior: Investigations into implicational S5. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 10 (1964), 203–220. | MR