Keywords: statistical convergence; set of the first category; Hausdorff dimension; homogeneous set
@article{CMJ_2003_53_4_a15,
author = {Dindo\v{s}, M. and \v{S}al\'at, T. and Toma, V.},
title = {Statistical convergence of infinite series},
journal = {Czechoslovak Mathematical Journal},
pages = {989--1000},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018844},
zbl = {1080.40500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a15/}
}
Dindoš, M.; Šalát, T.; Toma, V. Statistical convergence of infinite series. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 989-1000. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a15/
[1] R. C. Buck and H. Pollard: Convergence and summability properties of subsequences. Bull. Amer. Math. Soc. 49 (1943), 924–931. | DOI | MR
[2] R. G. Cooke: Infinite Matrices and Sequence Spaces (Russian Edition). Moscow, 1960. | MR
[3] M. Dindoš, I. Martišovitš and T. Šalát: Remarks on infinite series in linear normed spaces. Tatra Mt. Math. Publ. 19 (2000), 31–46. | MR
[4] R. Durret: Probability: Theory and Examples. Duxbury Press, 1995. | MR
[5] H. Fast: Sur la convergence statistique. Coll. Math. 2 (1951), 241–244. | DOI | MR | Zbl
[6] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | MR | Zbl
[7] P. Kostyrko, M. Mačaj and T. Šalát: Statistical convergence and I-convergence. To appear in Real Anal. Exch. | MR
[8] H. H. Ostmann: Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. | MR | Zbl
[9] T. Šalát: On Hausdorff measure of linear sets. Czechoslovak Math. J. 11 (86) (1980), 24–56. (Russian) | MR
[10] T. Šalát: On subseries. Math. Zeit. 85 (1964), 209–225. | DOI | MR
[11] T. Šalát: Über die Cantorsche Reihen. Czechoslovak Math. J. 18 (93) (1968), 25–56.
[12] T. Šalát: On subseries of divergent series. Mat. Čas. SAV 18 (1968), 312–338. | MR
[13] T. Šalát: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. | MR
[14] I. J. Schoenberg: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361–375. | DOI | MR | Zbl
[15] C. Visser: The law of nought-or-one. Studia Math. 7 (1938), 143–159. | DOI | Zbl
[16] B. C. Tripathy: On statistically convergence series. Punjab University J. Math. XXXXII (1999), 1–8. | MR
[17] B. C. Tripathy: On statistical convergence. Proc. Estonian Acad. Sci. Phys. Math. 47 (1998), 299–303. | MR | Zbl
[18] A. Zygmund: Trigonometric series I. MIR, Moscow, 1965. (Russian) | MR