Achromatic number of $K_5 \times K_n$ for small $n$
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
Classification :
05C15
Keywords: complete vertex colouring; achromatic number; Cartesian product; complete graph
Keywords: complete vertex colouring; achromatic number; Cartesian product; complete graph
@article{CMJ_2003_53_4_a14,
author = {Hor\v{n}\'ak, Mirko and P\v{c}ola, \v{S}tefan},
title = {Achromatic number of $K_5 \times K_n$ for small $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {963--988},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018843},
zbl = {1080.05510},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/}
}
Horňák, Mirko; Pčola, Štefan. Achromatic number of $K_5 \times K_n$ for small $n$. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/