Keywords: complete vertex colouring; achromatic number; Cartesian product; complete graph
@article{CMJ_2003_53_4_a14,
author = {Hor\v{n}\'ak, Mirko and P\v{c}ola, \v{S}tefan},
title = {Achromatic number of $K_5 \times K_n$ for small $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {963--988},
year = {2003},
volume = {53},
number = {4},
mrnumber = {2018843},
zbl = {1080.05510},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/}
}
Horňák, Mirko; Pčola, Štefan. Achromatic number of $K_5 \times K_n$ for small $n$. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/
[1] A. Bouchet: Indice achromatique des graphes multiparti complets et réguliers. Cahiers Centre Études Rech. Opér. 20 (1978), 331–340. | MR | Zbl
[2] N. P. Chiang and H. L. Fu: On the achromatic number of the Cartesian product $G_1\times G_2$. Australas. J. Combin. 6 (1992), 111–117. | MR
[3] N. P. Chiang and H. L. Fu: The achromatic indices of the regular complete multipartite graphs. Discrete Math. 141 (1995), 61–66. | DOI | MR
[4] K. Edwards: The harmonious chromatic number and the achromatic number. In: Surveys in Combinatorics 1997. London Math. Soc. Lect. Notes Series 241, R. A. Bailey (ed.), Cambridge University Press, 1997, pp. 13–47. | MR | Zbl
[5] F. Harary, S. Hedetniemi and G. Prins: An interpolation theorem for graphical homomorphisms. Portug. Math. 26 (1967), 454–462. | MR
[6] M. Horňák and Š. Pčola: Achromatic number of $K_5\times K_n$ for large $n$. Discrete Math. 234 (2001), 159–169. | DOI | MR
[7] M. Horňák and J. Puntigán: On the achromatic number of $K_m\times K_n$. In: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24–27, 1982, M. Fiedler (ed.), Teubner, Leipzig, 1983, pp. 118–123. | MR
[8] M. Yannakakis and F. Gavril: Edge dominating sets in graphs. SIAM J. Appl. Math. 38 (1980), 364–372. | DOI | MR