Achromatic number of $K_5 \times K_n$ for small $n$
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
Classification : 05C15
Keywords: complete vertex colouring; achromatic number; Cartesian product; complete graph
@article{CMJ_2003_53_4_a14,
     author = {Hor\v{n}\'ak, Mirko and P\v{c}ola, \v{S}tefan},
     title = {Achromatic number of $K_5 \times K_n$ for small $n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {963--988},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018843},
     zbl = {1080.05510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Pčola, Štefan
TI  - Achromatic number of $K_5 \times K_n$ for small $n$
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 963
EP  - 988
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/
LA  - en
ID  - CMJ_2003_53_4_a14
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Pčola, Štefan
%T Achromatic number of $K_5 \times K_n$ for small $n$
%J Czechoslovak Mathematical Journal
%D 2003
%P 963-988
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/
%G en
%F CMJ_2003_53_4_a14
Horňák, Mirko; Pčola, Štefan. Achromatic number of $K_5 \times K_n$ for small $n$. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a14/

[1] A.  Bouchet: Indice achromatique des graphes multiparti complets et réguliers. Cahiers Centre Études Rech. Opér. 20 (1978), 331–340. | MR | Zbl

[2] N. P.  Chiang and H. L.  Fu: On the achromatic number of the Cartesian product $G_1\times G_2$. Australas. J.  Combin. 6 (1992), 111–117. | MR

[3] N. P.  Chiang and H. L. Fu: The achromatic indices of the regular complete multipartite graphs. Discrete Math. 141 (1995), 61–66. | DOI | MR

[4] K.  Edwards: The harmonious chromatic number and the achromatic number. In: Surveys in Combinatorics 1997. London Math. Soc. Lect. Notes Series 241, R. A. Bailey (ed.), Cambridge University Press, 1997, pp. 13–47. | MR | Zbl

[5] F.  Harary, S.  Hedetniemi and G.  Prins: An interpolation theorem for graphical homomorphisms. Portug. Math. 26 (1967), 454–462. | MR

[6] M. Horňák and Š. Pčola: Achromatic number of $K_5\times K_n$ for large  $n$. Discrete Math. 234 (2001), 159–169. | DOI | MR

[7] M.  Horňák and J. Puntigán: On the achromatic number of $K_m\times K_n$. In: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24–27, 1982, M.  Fiedler (ed.), Teubner, Leipzig, 1983, pp. 118–123. | MR

[8] M.  Yannakakis and F.  Gavril: Edge dominating sets in graphs. SIAM J.  Appl. Math. 38 (1980), 364–372. | DOI | MR