Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 917-924 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let ${\mathcal{M}}_g$ be the moduli space of smooth complex projective curves of genus $g$. Here we prove that the subset of ${\mathcal{M}}_g$ formed by all curves for which some Brill-Noether locus has dimension larger than the expected one has codimension at least two in ${\mathcal{M}}_g$. As an application we show that if $X \in {\mathcal{M}}_g$ is defined over ${\mathbb {R}}$, then there exists a low degree pencil $u\: X \rightarrow {\mathbb {P}}^1$ defined over ${\mathbb {R}}$.
Let ${\mathcal{M}}_g$ be the moduli space of smooth complex projective curves of genus $g$. Here we prove that the subset of ${\mathcal{M}}_g$ formed by all curves for which some Brill-Noether locus has dimension larger than the expected one has codimension at least two in ${\mathcal{M}}_g$. As an application we show that if $X \in {\mathcal{M}}_g$ is defined over ${\mathbb {R}}$, then there exists a low degree pencil $u\: X \rightarrow {\mathbb {P}}^1$ defined over ${\mathbb {R}}$.
Classification : 14H10, 14H51, 14P99
Keywords: moduli space of curves; gonality; real curves; Brill-Noether theory; real algebraic curves; real Riemann surfaces
@article{CMJ_2003_53_4_a10,
     author = {Ballico, E.},
     title = {Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves},
     journal = {Czechoslovak Mathematical Journal},
     pages = {917--924},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018839},
     zbl = {1080.14518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a10/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 917
EP  - 924
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a10/
LA  - en
ID  - CMJ_2003_53_4_a10
ER  - 
%0 Journal Article
%A Ballico, E.
%T Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves
%J Czechoslovak Mathematical Journal
%D 2003
%P 917-924
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a10/
%G en
%F CMJ_2003_53_4_a10
Ballico, E. Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 917-924. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a10/

[1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves, I . Springer-Verlag, 1985. | MR

[2] S. Chaudary: The Brill-Noether theorem for real algebraic curves. Ph.D. thesis. Duke University, 1995.

[3] M. Coppens: One-dimensional linear systems of type II on smooth curves. Ph.D. thesis. Utrecht, 1983.

[4] M. Coppens and G. Martens: Linear series on a general $k$-gonal curve. Abh. Math. Sem. Univ. Hamburg 69 (1999), 347–371. | DOI | MR

[5] S. Diaz: A bound on the dimension of complete subvarieties of ${\mathcal{M}}_g$. Duke Math. J. 51 (1984), 405–408. | DOI | MR

[6] C. J. Earle: On moduli of closed Riemann surfaces with symmetries. Advances in the Theory of Riemann Surfaces. Annals of Math. Studies 66, Princeton, N. J., 1971, pp. 119–130. | MR

[7] B. Gross and J. Harris: Real algebraic curves. Ann. scient. Éc. Norm. Sup., $4^e$ série 14 (1981), 157–182. | MR

[8] J. Harris and D. Mumford: On the Kodaira dimension of the moduli space of curves. Invent. Math. 67 (1982), 23–86. | DOI | MR

[9] M. Homma: Separable gonality of a Gorenstein curve. Mat. Contemp (to appear). | MR | Zbl

[10] M. Seppälä: Teichmüller spaces of Klein surfaces. Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes 15 (1978), 1–37.

[11] M. Seppälä: Real algebraic curves in the moduli spaces of complex curves. Compositio Math. 74 (1990), 259–283. | MR

[12] C. S. Seshadri: Fibrés vectoriels sur les courbes algébriques. Astérisque 96. Soc. Math. France, 1982. | MR