Structure of partially ordered cyclic semigroups
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 777-791
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper recalls some properties of a cyclic semigroup and examines cyclic subsemigroups in a finite ordered semigroup. We prove that a partially ordered cyclic semigroup has a spiral structure which leads to a separation of three classes of such semigroups. The cardinality of the order relation is also estimated. Some results concern semigroups with a lattice order.
This paper recalls some properties of a cyclic semigroup and examines cyclic subsemigroups in a finite ordered semigroup. We prove that a partially ordered cyclic semigroup has a spiral structure which leads to a separation of three classes of such semigroups. The cardinality of the order relation is also estimated. Some results concern semigroups with a lattice order.
Classification : 06F05, 20M10, 20M30
Keywords: cyclic semigroup; ordered semigroup; lattice order; idempotent element; subidempotent; superidempotent elements
@article{CMJ_2003_53_4_a1,
     author = {Drewniak, J\'osef and Sobera, Jolanta},
     title = {Structure of partially ordered cyclic semigroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {777--791},
     year = {2003},
     volume = {53},
     number = {4},
     mrnumber = {2018830},
     zbl = {1080.06019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a1/}
}
TY  - JOUR
AU  - Drewniak, Jósef
AU  - Sobera, Jolanta
TI  - Structure of partially ordered cyclic semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 777
EP  - 791
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a1/
LA  - en
ID  - CMJ_2003_53_4_a1
ER  - 
%0 Journal Article
%A Drewniak, Jósef
%A Sobera, Jolanta
%T Structure of partially ordered cyclic semigroups
%J Czechoslovak Mathematical Journal
%D 2003
%P 777-791
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a1/
%G en
%F CMJ_2003_53_4_a1
Drewniak, Jósef; Sobera, Jolanta. Structure of partially ordered cyclic semigroups. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 777-791. http://geodesic.mathdoc.fr/item/CMJ_2003_53_4_a1/

[1] G.  Birkhoff: Lattice Theory. AMS Coll. Publ. 25, Providence, 1967. | MR | Zbl

[2] E. Czogala and J.  Drewniak: Associative monotonic operations in fuzzy set theory. Fuzzy Sets Syst. 12 (1984), 249–269. | MR

[3] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl

[4] J. M.  Howie: An Introduction to Semigroup Theory. Acad. Press, London, 1976. | MR | Zbl

[5] J.-X.  Li: Periodicity of powers of fuzzy matrices (finite fuzzy relations). Fuzzy Sets Syst. 48 (1992), 365–369. | MR | Zbl

[6] L.  Redei: Algebra. Pergamon Press, Oxford, 1967. | MR | Zbl

[7] Š.  Schwarz: On the semigroup of binary relations on a finite set. Czechoslovak Math.  J. 20 (1970), 632–679. | MR | Zbl

[8] Š.  Schwarz: On idempotent relations on a finite set. Czechoslovak Math.  J. 20 (1970), 696–714. | MR

[9] M. G.  Thomasom: Convergence of powers of a fuzzy matrix. J.  Math. Anal. Appl. 57 (1977), 476–480. | DOI | MR

[10] M.  Yoeli: A note on a generalization of Boolean matrix theory. Amer. Math. Monthly 68 (1961), 552–557. | DOI | MR | Zbl