Keywords: modules; Summand Intersection Property; Morita invariant
@article{CMJ_2003_53_3_a9,
author = {Karabacak, F. and Tercan, A.},
title = {Matrix rings with summand intersection property},
journal = {Czechoslovak Mathematical Journal},
pages = {621--626},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000057},
zbl = {1080.16503},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a9/}
}
Karabacak, F.; Tercan, A. Matrix rings with summand intersection property. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 621-626. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a9/
[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules. Springer-Verlag, 1974. | MR
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park: When is the CS condition hereditary. Comm. Algebra 27 (1999), 3875–3885. | DOI | MR
[3] J. L. Garcia: Properties of direct summands of modules. Comm. Algebra 17 (1989), 73–92. | DOI | MR | Zbl
[4] K. R. Goodearl: Ring Theory. Marcel Dekker, 1976. | MR | Zbl
[5] J. Hausen: Modules with the summand intersection property. Comm. Algebra 17 (1989), 135–148. | DOI | MR | Zbl
[6] I. Kaplansky: Infinite Abelian Groups. University of Michigan Press, 1969. | MR | Zbl
[7] G. V. Wilson: Modules with the summand intersection property. Comm. Algebra 14 (1986), 21–38. | DOI | MR | Zbl