Keywords: closed linear operator; $C_0$-semigroup; infinitesimal generator; semistable operator; singular differential equation
@article{CMJ_2003_53_3_a8,
author = {Koliha, J. J. and Tran, Trung Dinh},
title = {Closed semistable operators and singular differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {605--620},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000056},
zbl = {1080.47500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a8/}
}
Koliha, J. J.; Tran, Trung Dinh. Closed semistable operators and singular differential equations. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 605-620. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a8/
[1] M. D. Blake: A spectral bound for asymptotically norm-continuous semigroups. J. Operator Theory 45 (2001), 111–130. | MR | Zbl
[2] S. L. Campbell: Singular Systems of Differential Equations. Pitman, San Francisco, 1980. | Zbl
[3] S. R. Caradus, W. E. Pfaffenberger and B. Yood: Calkin Algebras and Algebras of Operators on Banach Spaces. Lect. Notes Pure Appl. Math. Vol. 9. Dekker, New York, 1974. | MR
[4] Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter: One-Parameter Semigroups. North-Holland, Amsterdam, 1987. | MR
[5] G. Greiner, J. A. P. Heesterbeek and J. A. J. Metz: A singular perturbation theorem for evolution equations and time-scale arguments for structured population models. Canad. Appl. Math. Quart. 2 (1994), 435–459. | MR
[6] T. H. Gronwall: Note on the derivatives with respect to a parameter of solutions of a system of differential equations. Ann. of Math. 20 (1919), 292–296. | DOI | MR
[7] T. Kato: Perturbation Theory for Linear Operators, 2nd ed. Springer, Berlin, 1980. | MR
[8] J. J. Koliha: Isolated spectral points. Proc. Amer. Math. Soc. 124 (1996), 3417–3424. | DOI | MR | Zbl
[9] J. J. Koliha and Trung Dinh Tran: Semistable operators and singularly perturbed differential equations. J. Math. Anal. Appl. 231 (1999), 446–458. | DOI | MR
[10] J. Martinez and J. M. Mazon: $C_0$-semigroups s norm continuous at infinity. Semigroup Forum 52 (1996), 213–224. | DOI | MR
[11] R. Nagel and J. Poland: The critical spectrum of a strongly continuous semigroup. Adv. Math. 152 (2000), 120–133. | DOI | MR
[12] J. van Neerven: The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel, 1996. | MR | Zbl
[13] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York. | MR | Zbl
[14] J. Prüss: Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11 (1981), 65–84. | DOI | MR
[15] A. E. Taylor and D. C. Lay: Introduction to Functional Analysis, 2nd ed. Wiley, New York, 1980. | MR
[16] H. R. Thieme: Balanced exponential growth of operator semigroups. J. Math. Anal. Appl. 223, 30–49. | DOI | MR | Zbl
[17] G. F. Webb: Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York, 1985. | MR | Zbl
[18] G. F. Webb: An operator theoretic formulation of asynchronous exponential growth. Trans. Amer. Math. Soc. 303 (1987), 751–763. | DOI | MR | Zbl