Closed semistable operators and singular differential equations
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 605-620
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a class of closed linear operators on a Banach space whose nonzero spectrum lies in the open left half plane, and for which $0$ is at most a simple pole of the operator resolvent. Our spectral theory based methods enable us to give a simple proof of the characterization of $C_0$-semigroups of bounded linear operators with asynchronous exponential growth, and recover results of Thieme, Webb and van Neerven. The results are applied to the study of the asymptotic behavior of the solutions to a singularly perturbed differential equation in a Banach space.
We study a class of closed linear operators on a Banach space whose nonzero spectrum lies in the open left half plane, and for which $0$ is at most a simple pole of the operator resolvent. Our spectral theory based methods enable us to give a simple proof of the characterization of $C_0$-semigroups of bounded linear operators with asynchronous exponential growth, and recover results of Thieme, Webb and van Neerven. The results are applied to the study of the asymptotic behavior of the solutions to a singularly perturbed differential equation in a Banach space.
Classification : 34G10, 47A10, 47A60, 47D06
Keywords: closed linear operator; $C_0$-semigroup; infinitesimal generator; semistable operator; singular differential equation
@article{CMJ_2003_53_3_a8,
     author = {Koliha, J. J. and Tran, Trung Dinh},
     title = {Closed semistable operators and singular differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {605--620},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000056},
     zbl = {1080.47500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a8/}
}
TY  - JOUR
AU  - Koliha, J. J.
AU  - Tran, Trung Dinh
TI  - Closed semistable operators and singular differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 605
EP  - 620
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a8/
LA  - en
ID  - CMJ_2003_53_3_a8
ER  - 
%0 Journal Article
%A Koliha, J. J.
%A Tran, Trung Dinh
%T Closed semistable operators and singular differential equations
%J Czechoslovak Mathematical Journal
%D 2003
%P 605-620
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a8/
%G en
%F CMJ_2003_53_3_a8
Koliha, J. J.; Tran, Trung Dinh. Closed semistable operators and singular differential equations. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 605-620. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a8/

[1] M. D.  Blake: A spectral bound for asymptotically norm-continuous semigroups. J. Operator Theory 45 (2001), 111–130. | MR | Zbl

[2] S. L.  Campbell: Singular Systems of Differential Equations. Pitman, San Francisco, 1980. | Zbl

[3] S. R.  Caradus, W. E.  Pfaffenberger and B.  Yood: Calkin Algebras and Algebras of Operators on Banach Spaces. Lect. Notes Pure Appl. Math. Vol. 9. Dekker, New York, 1974. | MR

[4] Ph.  Clément, H. J. A. M.  Heijmans, S.  Angenent, C. J.  van Duijn and B.  de  Pagter: One-Parameter Semigroups. North-Holland, Amsterdam, 1987. | MR

[5] G.  Greiner, J. A. P.  Heesterbeek and J. A. J.  Metz: A singular perturbation theorem for evolution equations and time-scale arguments for structured population models. Canad. Appl. Math. Quart. 2 (1994), 435–459. | MR

[6] T. H.  Gronwall: Note on the derivatives with respect to a parameter of solutions of a system of differential equations. Ann. of Math. 20 (1919), 292–296. | DOI | MR

[7] T.  Kato: Perturbation Theory for Linear Operators, 2nd ed. Springer, Berlin, 1980. | MR

[8] J. J.  Koliha: Isolated spectral points. Proc. Amer. Math. Soc. 124 (1996), 3417–3424. | DOI | MR | Zbl

[9] J. J.  Koliha and Trung Dinh Tran: Semistable operators and singularly perturbed differential equations. J.  Math. Anal. Appl. 231 (1999), 446–458. | DOI | MR

[10] J.  Martinez and J. M.  Mazon: $C_0$-semigroups s norm continuous at infinity. Semigroup Forum 52 (1996), 213–224. | DOI | MR

[11] R.  Nagel and J.  Poland: The critical spectrum of a strongly continuous semigroup. Adv. Math. 152 (2000), 120–133. | DOI | MR

[12] J.  van Neerven: The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel, 1996. | MR | Zbl

[13] A.  Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York. | MR | Zbl

[14] J.  Prüss: Equilibrium solutions of age-specific population dynamics of several species. J.  Math. Biol. 11 (1981), 65–84. | DOI | MR

[15] A. E.  Taylor and D. C.  Lay: Introduction to Functional Analysis, 2nd ed. Wiley, New York, 1980. | MR

[16] H. R.  Thieme: Balanced exponential growth of operator semigroups. J.  Math. Anal. Appl. 223, 30–49. | DOI | MR | Zbl

[17] G. F.  Webb: Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York, 1985. | MR | Zbl

[18] G. F.  Webb: An operator theoretic formulation of asynchronous exponential growth. Trans. Amer. Math. Soc. 303 (1987), 751–763. | DOI | MR | Zbl