Keywords: weakly associative lattice ring; weakly associative lattice group; representable wal-ring
@article{CMJ_2003_53_3_a7,
author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}alounov\'a, Dana},
title = {Non-transitive generalizations of subdirect products of linearly ordered rings},
journal = {Czechoslovak Mathematical Journal},
pages = {591--603},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000055},
zbl = {1080.06032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a7/}
}
TY - JOUR AU - Rachůnek, Jiří AU - Šalounová, Dana TI - Non-transitive generalizations of subdirect products of linearly ordered rings JO - Czechoslovak Mathematical Journal PY - 2003 SP - 591 EP - 603 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a7/ LA - en ID - CMJ_2003_53_3_a7 ER -
Rachůnek, Jiří; Šalounová, Dana. Non-transitive generalizations of subdirect products of linearly ordered rings. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 591-603. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a7/
[1] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux réticulés. Springer Verlag, Berlin-Heidelberg-New York, 1977. | MR
[2] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York-Heidelberg-Berlin, 1981. | MR
[3] E. Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151–164. | MR
[4] L. Fuchs: Partially Ordered Algebraic Systems. Mir, Moscow, 1965. (Russian) | MR
[5] V. M. Kopytov: Lattice Ordered Groups. Nauka, Moscow, 1984. (Russian) | MR | Zbl
[6] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice Ordered Groups. Kluwer Acad. Publ., Dordrecht, 1994. | MR
[7] A. G. Kurosch,: Lectures on General Algebra. Academia, Praha, 1977. (Czech)
[8] J. Rachůnek: Solid subgroups of weakly associative lattice groups. Acta Univ. Palack. Olom. Fac. Rerum Natur. 105, Math. 31 (1992), 13–24. | MR
[9] J. Rachůnek: Circular totally semi-ordered groups. Acta Univ. Palack. Olom. Fac. Rerum Natur. 114, Math. 33 (1994), 109–116. | MR
[10] J. Rachůnek: On some varieties of weakly associative lattice groups. Czechoslovak Math. J. 46 (121) (1996), 231–240. | MR
[11] J. Rachůnek: A weakly associative generalization of the variety of representable lattice ordered groups. Acta Univ. Palack. Olom. Fac. Rerum Natur., Math. 37 (1998), 107–112. | MR
[12] J. Rachůnek: Weakly associative lattice groups with lattice ordered positive cones. In: Contrib. Gen. Alg. 11, Verlag Johannes Heyn, Klagenfurt, 1999, pp. 173–180. | MR
[13] D. Šalounová: Weakly associative lattice rings. Acta Math. Inform. Univ. Ostraviensis 8 (2000), 75–87. | MR
[14] H. Skala: Trellis theory. Algebra Universalis 1 (1971), 218–233. | DOI | MR | Zbl
[15] H. Skala: Trellis Theory. Memoirs AMS, Providence, 1972. | MR | Zbl