On the normality of an almost contact $3$-structure on $QR$-submanifolds
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 571-589
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study $n$-dimensional $QR$-submanifolds of $QR$-dimension $(p-1)$ immersed in a quaternionic space form $QP^{(n+p)/4}(c)$, $c\geqq 0$, and, in particular, determine such submanifolds with the induced normal almost contact $3$-structure.
We study $n$-dimensional $QR$-submanifolds of $QR$-dimension $(p-1)$ immersed in a quaternionic space form $QP^{(n+p)/4}(c)$, $c\geqq 0$, and, in particular, determine such submanifolds with the induced normal almost contact $3$-structure.
Classification : 53C40, 53D15
Keywords: quaternionic projective space; quaternionic number space; $QR$-submanifold; normal almost contact $3$-structure
@article{CMJ_2003_53_3_a6,
     author = {Funabashi, S. and Pak, J. S. and Shin, Y. J.},
     title = {On the normality of an almost contact $3$-structure on $QR$-submanifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {571--589},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000054},
     zbl = {1080.53050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a6/}
}
TY  - JOUR
AU  - Funabashi, S.
AU  - Pak, J. S.
AU  - Shin, Y. J.
TI  - On the normality of an almost contact $3$-structure on $QR$-submanifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 571
EP  - 589
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a6/
LA  - en
ID  - CMJ_2003_53_3_a6
ER  - 
%0 Journal Article
%A Funabashi, S.
%A Pak, J. S.
%A Shin, Y. J.
%T On the normality of an almost contact $3$-structure on $QR$-submanifolds
%J Czechoslovak Mathematical Journal
%D 2003
%P 571-589
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a6/
%G en
%F CMJ_2003_53_3_a6
Funabashi, S.; Pak, J. S.; Shin, Y. J. On the normality of an almost contact $3$-structure on $QR$-submanifolds. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 571-589. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a6/

[1] M.  Barros, B. Y.  Chen and F.  Urbano: Quaternion $CR$-submanifolds of a quaternion manifold. Kodai Math.  J. 4 (1981), 399–418. | MR

[2] A.  Bejancu: Geometry of $CR$-submanifolds. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986. | MR | Zbl

[3] B. Y.  Chen: Geometry of Submanifolds. Marcel Dekker Inc., New York, 1973. | MR | Zbl

[4] J.  Erbacher: Reduction of the codimension of anisometric immersion. J.  Differential Geom. 5 (1971), 333–340. | DOI | MR

[5] S.  Ishihara: Quaternion Kaehlerian manifolds. J.  Differential Geom. 9 (1974), 483–500. | DOI | MR | Zbl

[6] S.  Ishihara and M.  Konishi: Differential geometry of fibred spaces. Publication of the Study Group of Geometry, Vol.  8, Institute of Mathematics, Yoshida College, Tokyo, 1973. | MR

[7] D.  Krupka: The trace decomposition problem. Beiträge Algebra Geom.; Contrib. Alg. Geom. 36 (1995), 303–315. | MR | Zbl

[8] Y. Y.  Kuo: On almost contact $3$-structure. Tohoku Math.  J. 22 (1970), 235–332. | MR | Zbl

[9] J.-H.  Kwon and J. S.  Pak: $QR$-submanifolds of $(p-1)$ $QR$-dimension in a quaternionic projective space $QP^{(n+p)/4}$. Acta Math. Hungar. 86 (2000), 89–116. | DOI | MR

[10] J.-H.  Kwon and J. S.  Pak: Scalar curvature of $QR$-submanifolds immersed in a quaternionic projective space. Saitama Math.  J 17 (1999), 47–57. | MR

[11] J.-H.  Kwon and J. S.  Pak: On $n$-dimensional $QR$-submanifolds of $(p-1)$ $QR$-dimension in a quaternionic space form. Preprint.

[12] M.  Okumura and L.  Vanhecke: A class of normal almost contact $CR$-submanifolds in  $C^q$. Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 359–369. | MR

[13] J. S.  Pak: Real hypersurfaces in quaternionic Kaehlerian manifolds with constant $Q$-sectional curvature. Kodai Math. Sem. Rep. 29 (1977), 22–61. | DOI | MR | Zbl

[14] K.  Yano, S.  Ishihara and M.  Konishi: Normality of almost contact $3$-structure. Tohoku Math.  J. 25 (1973), 167–175. | DOI | MR