Positive periodic solutions of $N$-species neutral delay systems
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 561-570
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we employ some new techniques to study the existence of positive periodic solution of $n$-species neutral delay system \[ N^{\prime }_i(t)=N_i(t)\biggl [a_i(t)-\sum _{j=1}^n\beta _{ij}(t)N_j(t)- \sum _{j=1}^nb_{ij}(t)N_j(t-\tau _{ij}(t))-\sum _{j=1}^nc_{ij}(t) N^{\prime }_j(t-\tau _{ij}(t))\biggr ]. \] As a corollary, we answer an open problem proposed by Y. Kuang.
In this paper, we employ some new techniques to study the existence of positive periodic solution of $n$-species neutral delay system \[ N^{\prime }_i(t)=N_i(t)\biggl [a_i(t)-\sum _{j=1}^n\beta _{ij}(t)N_j(t)- \sum _{j=1}^nb_{ij}(t)N_j(t-\tau _{ij}(t))-\sum _{j=1}^nc_{ij}(t) N^{\prime }_j(t-\tau _{ij}(t))\biggr ]. \] As a corollary, we answer an open problem proposed by Y. Kuang.
Classification : 34A12, 34C25, 34K13, 34K15, 34K40
Keywords: positive periodic solutions; existence; neutral delay system
@article{CMJ_2003_53_3_a5,
     author = {Fang, Hui},
     title = {Positive periodic solutions of $N$-species neutral delay systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {561--570},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000053},
     zbl = {1080.34530},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a5/}
}
TY  - JOUR
AU  - Fang, Hui
TI  - Positive periodic solutions of $N$-species neutral delay systems
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 561
EP  - 570
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a5/
LA  - en
ID  - CMJ_2003_53_3_a5
ER  - 
%0 Journal Article
%A Fang, Hui
%T Positive periodic solutions of $N$-species neutral delay systems
%J Czechoslovak Mathematical Journal
%D 2003
%P 561-570
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a5/
%G en
%F CMJ_2003_53_3_a5
Fang, Hui. Positive periodic solutions of $N$-species neutral delay systems. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 561-570. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a5/

[1] Y.  Kuang: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York, 1993. | MR | Zbl

[2] H. I. Freedman and J.  Wu: Periodic solutions of single-species models with periodic delay. SIAM J.  Math. Anal. 23 (1992), 689–701. | DOI | MR

[3] L.  Erbe, W.  Krawcewicz and J.  Wu: A composite coincidence degree with applications to boundary value problems of neutral equations. Trans. Amer. Math. Soc. 335 (1993), 459–478. | DOI | MR

[4] W. Krawcewicz and J.  Wu: Theory of Degrees with Applications to Bifurcations and Differential Equations. John Wiley & Sons, Inc., New York, 1996. | MR