On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 535-543
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper is concerned with a recent very interesting theorem obtained by Holický and Zelený. We provide an alternative proof avoiding games used by Holický and Zelený and give some generalizations to the case of set-valued mappings.
The paper is concerned with a recent very interesting theorem obtained by Holický and Zelený. We provide an alternative proof avoiding games used by Holický and Zelený and give some generalizations to the case of set-valued mappings.
Classification : 26A21, 28A05, 54C10, 54H05
Keywords: Borel maps; $\sigma $-compact sections; set-valued maps
@article{CMJ_2003_53_3_a3,
     author = {Milewski, P. and Pol, R.},
     title = {On a theorem of {Holick\'y} and {Zelen\'y} concerning {Borel} maps without $\sigma$-compact fibers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {535--543},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000051},
     zbl = {1080.54511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/}
}
TY  - JOUR
AU  - Milewski, P.
AU  - Pol, R.
TI  - On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 535
EP  - 543
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/
LA  - en
ID  - CMJ_2003_53_3_a3
ER  - 
%0 Journal Article
%A Milewski, P.
%A Pol, R.
%T On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers
%J Czechoslovak Mathematical Journal
%D 2003
%P 535-543
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/
%G en
%F CMJ_2003_53_3_a3
Milewski, P.; Pol, R. On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 535-543. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/

[1] J. Chaber and R. Pol: Remarks on closed relations and a theorem of Hurewicz. Topology Proc. 22 (1997), 81–94. | MR

[2] C. Dellacherie: Un cours sur les ensembles analytiques. In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 183–316.

[3] R. Engelking: General Topology. PWN, Warszawa, 1977. | MR | Zbl

[4] J. Hoffman-Jørgensen and F. Topsøe: Analytic spaces and their Application. In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 317–401.

[5] P. Holický and M. Zelený: A converse of Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections. Fund. Math. 165 (2000), 191–202. | MR

[6] A. S. Kechris: Classical Descriptive Set Theory. Springer-Verlag, New York, 1994. | MR

[7] A. S. Kechris, A. Louveau and W. H. Woodin: The structure of $\sigma $-ideals of compact sets. Trans. Amer. Math. Soc. 301 (1987), 263–288. | MR

[8] K. Kuratowski: Topology  I and II. Academic Press, Warszawa, 1966 and 1968. | MR

[9] H. Michalewski and R. Pol: On a Hurewicz-type theorem and a selection theorem of Michael. Bull. Polish Acad. Sci. Math. 43 (1995), 273–275. | MR

[10] R. Pol: Some remarks about measurable parametrizations. Proc. Amer. Math. Soc. 93 (1985), 628–632. | DOI | MR | Zbl