Keywords: Borel maps; $\sigma $-compact sections; set-valued maps
@article{CMJ_2003_53_3_a3,
author = {Milewski, P. and Pol, R.},
title = {On a theorem of {Holick\'y} and {Zelen\'y} concerning {Borel} maps without $\sigma$-compact fibers},
journal = {Czechoslovak Mathematical Journal},
pages = {535--543},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000051},
zbl = {1080.54511},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/}
}
TY - JOUR AU - Milewski, P. AU - Pol, R. TI - On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers JO - Czechoslovak Mathematical Journal PY - 2003 SP - 535 EP - 543 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/ LA - en ID - CMJ_2003_53_3_a3 ER -
Milewski, P.; Pol, R. On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 535-543. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a3/
[1] J. Chaber and R. Pol: Remarks on closed relations and a theorem of Hurewicz. Topology Proc. 22 (1997), 81–94. | MR
[2] C. Dellacherie: Un cours sur les ensembles analytiques. In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 183–316.
[3] R. Engelking: General Topology. PWN, Warszawa, 1977. | MR | Zbl
[4] J. Hoffman-Jørgensen and F. Topsøe: Analytic spaces and their Application. In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 317–401.
[5] P. Holický and M. Zelený: A converse of Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections. Fund. Math. 165 (2000), 191–202. | MR
[6] A. S. Kechris: Classical Descriptive Set Theory. Springer-Verlag, New York, 1994. | MR
[7] A. S. Kechris, A. Louveau and W. H. Woodin: The structure of $\sigma $-ideals of compact sets. Trans. Amer. Math. Soc. 301 (1987), 263–288. | MR
[8] K. Kuratowski: Topology I and II. Academic Press, Warszawa, 1966 and 1968. | MR
[9] H. Michalewski and R. Pol: On a Hurewicz-type theorem and a selection theorem of Michael. Bull. Polish Acad. Sci. Math. 43 (1995), 273–275. | MR
[10] R. Pol: Some remarks about measurable parametrizations. Proc. Amer. Math. Soc. 93 (1985), 628–632. | DOI | MR | Zbl