Weak multiplication modules
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 529-534
In this paper we characterize weak multiplication modules.
In this paper we characterize weak multiplication modules.
Classification :
13A05, 13C05, 13C13, 13E05
Keywords: prime submodules; weak multiplication modules; rank of modules
Keywords: prime submodules; weak multiplication modules; rank of modules
@article{CMJ_2003_53_3_a2,
author = {Azizi, A.},
title = {Weak multiplication modules},
journal = {Czechoslovak Mathematical Journal},
pages = {529--534},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000050},
zbl = {1083.13502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a2/}
}
Azizi, A. Weak multiplication modules. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 529-534. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a2/
[1] S. Abu-Saemeh: On dimension of finitely generated modules. Comm. Algebra 23 (1995), 1131–1144. | DOI | MR
[2] A. Azizi and H. Sharif: On prime submodules. Honam Math. J. 21 (1999), 1–12. | MR
[3] A. Barnard: Multiplication modules. J. Algebra 71 (1981), 174–178. | DOI | MR | Zbl
[4] C. P. Lu: Prime submodules of modules. Comment. Math. Univ. St. Paul. 33 (1984), 61–69. | MR | Zbl
[5] C. P. Lu: Spectra of modules. Comm. Algebra 23 (1995), 3741–3752. | DOI | MR | Zbl
[6] R. L. McCasland and M. E. Moore: Prime submodules. Comm. Algebra 20 (1992), 1803–1817. | DOI | MR
[7] H. Matsumura: Commutative Ring Theory. Cambridge University Press, Cambridge, 1990. | MR