Keywords: compressible Navier-Stokes equations; global-in-time solutions; large time bahaviour
@article{CMJ_2003_53_3_a19,
author = {Aizicovici, Sergiu and Feireisl, Eduard},
title = {On the long-time behaviour of compressible fluid flows subjected to highly oscillating external forces},
journal = {Czechoslovak Mathematical Journal},
pages = {757--767},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000067},
zbl = {1080.35061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a19/}
}
TY - JOUR AU - Aizicovici, Sergiu AU - Feireisl, Eduard TI - On the long-time behaviour of compressible fluid flows subjected to highly oscillating external forces JO - Czechoslovak Mathematical Journal PY - 2003 SP - 757 EP - 767 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a19/ LA - en ID - CMJ_2003_53_3_a19 ER -
%0 Journal Article %A Aizicovici, Sergiu %A Feireisl, Eduard %T On the long-time behaviour of compressible fluid flows subjected to highly oscillating external forces %J Czechoslovak Mathematical Journal %D 2003 %P 757-767 %V 53 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a19/ %G en %F CMJ_2003_53_3_a19
Aizicovici, Sergiu; Feireisl, Eduard. On the long-time behaviour of compressible fluid flows subjected to highly oscillating external forces. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 757-767. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a19/
[1] V. V. Chepyzhov and M. I. Vishik: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76 (1997), 913–964. | DOI | MR
[2] E. Feireisl: Propagation of oscillations, complete trajectories and attractors for compressible flows. NoDEA 10 (2003), 33–55. | DOI | MR | Zbl
[3] E. Feireisl, Š. Matušů-Nečasová, H. Petzeltová and I. Straškraba: On the motion of a viscous compressible flow driven by a time-periodic external flow. Arch. Rational Mech. Anal. 149 (1999), 69–96. | DOI | MR
[4] E. Feireisl, A. Novotný and H. Petzeltová: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Dynamics 3 (2000 2001), 358–218. | MR
[5] E. Feireisl and H. Petzeltová: On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscr. Math. 97 (1998), 109–116. | DOI | MR
[6] E. Feireisl and H. Petzeltová: Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow. Arch. Rational Mech. Anal. 150 (1999), 77–96. | DOI | MR
[7] E. Feireisl and H. Petzeltová: Zero-velocity-limit solutions to the Navier-Stokes equations of compressible fluid revisited. Ann. Univ. Ferrara 46 (2000), 209–218. | MR
[8] E. Feireisl and H. Petzeltová: Asymptotic compactness of global trajectories generated by the Navier-Stokes equations of compressible fluid. J. Differential Equations 173 (2001), 390–409. | DOI | MR
[9] E. Feireisl and H. Petzeltová: Bounded absorbing sets for the Navier-Stokes equations of compressible fluid. Commun. Partial Differential Equations 26 (2001), 1133–1144. | DOI | MR
[10] E. Feireisl and H. Petzeltová: On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equations 25 (2000), 755–767. | DOI | MR
[11] J.-F. Gerbeau and C. LeBris: On the long time behaviour of the solution to the two-fluids incompressible Navier-Stokes equations. Differential Integral Equations 12 (1999), 691–740. | MR
[12] D. Hoff and M. Ziane: The global attractor and finite determining modes for the Navier-Stokes equations of compressible flow with singular initial data. Indiana Univ. Math. J. 49 (2000), 843–889. | MR
[13] P.-L. Lions: Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford, 1998. | MR
[14] A. Novotný and I. Straškraba: Convergence to equilibria for compressible Navier-Stokes equations with large data. Ann. Mat. Pura Appl. 179 (2001), 263–287. | DOI | MR
[15] I. Straškraba: Asymptotic development of vacuum for 1-dimensional Navier-Stokes equations of compressible flow. Nonlinear World 3 (1996), 519–533. | MR