Keywords: semisymmetric Riemannian manifolds; semiparallel submanifolds; isometric immersions; planar foliated manifolds
@article{CMJ_2003_53_3_a16,
author = {Lumiste, \"Ulo},
title = {Semiparallel isometric immersions of 3-dimensional semisymmetric {Riemannian} manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {707--734},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000064},
zbl = {1080.53036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a16/}
}
Lumiste, Ülo. Semiparallel isometric immersions of 3-dimensional semisymmetric Riemannian manifolds. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 707-734. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a16/
[1] E. Boeckx: Foliated semi-symmetric spaces. Doctoral thesis, Katholieke Universiteit, Leuven, 1995. | Zbl
[2] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian Manifolds of Conullity Two. World Sc., Singapore, 1996. | MR
[3] É. Cartan: Leçons sur la géométrie des espaces de Riemann. 2nd editon. Gautier-Villars, Paris, 1946. | MR
[4] J. Deprez: Semi-parallel surfaces in Euclidean space. J. Geom. 25 (1985), 192–200. | DOI | MR | Zbl
[5] D. Ferus: Symmetric submanifolds of Euclidean space. Math. Ann. 247 (1980), 81–93. | DOI | MR | Zbl
[6] O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474. | MR | Zbl
[7] O. Kowalski and S. Ž. Nikčević: Contact homogeneity and envelopes of Riemannian metrics. Beitr. Algebra Geom. 39 (1998), 155–167. | MR
[8] Ü. Lumiste: Decomposition and classification theorems for semi-symmetric immersions. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 36 (1987), 414–417. | MR
[9] Ü. Lumiste: Semi-symmetric submanifolds with maximal first normal space. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 38 (1989), 453–457. | MR
[10] Ü. Lumiste: Semi-symmetric submanifold as the second order envelope of symmetric submanifolds. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 39 (1990), 1–8. | MR
[11] Ü. Lumiste: Classification of three-dimensional semi-symmetric submanifolds in Euclidean spaces. Tartu Ül. Toimetised 899 (1990), 29–44. | MR | Zbl
[12] Ü. Lumiste: Semi-symmetric envelopes of some symmetric cylindrical submanifolds. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 40 (1991), 245–257. | MR
[13] Ü. Lumiste: Second order envelopes of symmetric Segre submanifolds. Tartu Ül. Toimetised. 930 (1991), 15–26. | MR
[14] Ü. Lumiste: Isometric semiparallel immersions of two-dimensional Riemannian manifolds into pseudo-Euclidean spaces. New Developments in Differential Geometry, Budapest 1996, J. Szenthe (ed.), Kluwer Ac. Publ., Dordrecht, 1999, pp. 243–264. | MR | Zbl
[15] Ü. Lumiste: Submanifolds with parallel fundamental form. In: Handbook of Differential Geometry, Vol. I, F. Dillen, L. Verstraelen (eds.), Elsevier Sc. B. V., Amsterdam, 2000, pp. 779–864. | MR | Zbl
[16] Ü. Lumiste and K. Riives: Three-dimensional semi-symmetric submanifolds with axial, planar or spatial points in Euclidean spaces. Tartu Ülik. Toim. Acta et Comm. Univ. Tartuensis 899 (1990), 13–28. | MR
[17] V. Mirzoyan: $s$-semi-parallel submanifolds in spaces of constant curvature as the envelopes of $s$-parallel submanifolds. J. Contemp. Math. Analysis (Armenian Ac. Sci., Allerton Press, Inc.) 31 (1996), 37–48. | MR | Zbl
[18] V. Mirzoyan: On generalizations of Ü. Lumiste theorem on semi-parallel submanifolds. J. Contemp. Math. Analysis (Armenian Ac. Sci., Allerton Press, Inc.) 33 (1998), 48–58. | MR
[19] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 20 (1968), 46–59. | DOI | MR | Zbl
[20] K. Sekigawa: On some hypersurfaces satisfying $R(X,Y)\cdot R=0$. Tensor 25 (1972), 133–136. | MR
[21] P. A. Shirokov: Selected Works on Geometry. Izd. Kazanskogo Univ., Kazan, 1966. (Russian) | MR
[22] N. S. Sinjukov: On geodesic maps of Riemannian spaces. Trudy III Vsesojuzn. Matem. S’ezda (Proc. III All-Union Math. Congr.), I, Izd. AN SSSR, Moskva, 1956, pp. 167–168. (Russian)
[23] N. S. Sinjukov: Geodesic maps of Riemannian spaces. Publ. House “Nauka”, Moskva, 1979. (Russian) | MR
[24] W. Strübing: Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245 (1979), 37–44. | DOI
[25] Z. I. Szabó: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, I. The local version. J. Differential Geom. 17 (1982), 531–582. | DOI | MR
[26] H. Takagi: An example of Riemannian manifolds satisfying $R(X,Y)\cdot R=0$ but not $\nabla R=0$. Tôhoku Math. J. 24 (1972), 105–108. | DOI | MR | Zbl
[27] M. Takeuchi: Parallel submanifolds of space forms. Manifolds and Lie Groups. Papers in Honour of Y. Matsushima, Birkhäuser, Basel, 1981, pp. 429–447. | MR | Zbl
[28] J. Vilms: Submanifolds of Euclidean space with parallel second fundamental form. Proc. Amer. Math. Soc. 32 (1972), 263–267. | MR | Zbl