A completion of $\mathbb{Z}$ is a field
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 689-706 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define various ring sequential convergences on $\mathbb{Z}$ and $\mathbb{Q}$. We describe their properties and properties of their convergence completions. In particular, we define a convergence $\mathbb{L}_1$ on $\mathbb{Z}$ by means of a nonprincipal ultrafilter on the positive prime numbers such that the underlying set of the completion is the ultraproduct of the prime finite fields $\mathbb{Z}/(p)$. Further, we show that $(\mathbb{Z}, \mathbb{L}^\ast _1)$ is sequentially precompact but fails to be strongly sequentially precompact; this solves a problem posed by D. Dikranjan.
We define various ring sequential convergences on $\mathbb{Z}$ and $\mathbb{Q}$. We describe their properties and properties of their convergence completions. In particular, we define a convergence $\mathbb{L}_1$ on $\mathbb{Z}$ by means of a nonprincipal ultrafilter on the positive prime numbers such that the underlying set of the completion is the ultraproduct of the prime finite fields $\mathbb{Z}/(p)$. Further, we show that $(\mathbb{Z}, \mathbb{L}^\ast _1)$ is sequentially precompact but fails to be strongly sequentially precompact; this solves a problem posed by D. Dikranjan.
Classification : 13J10, 13J99, 54A20, 54H13
Keywords: sequential convergence; convergence ring; completion of a convergence ring
@article{CMJ_2003_53_3_a15,
     author = {Marcos, J. E.},
     title = {A completion of $\mathbb{Z}$ is a field},
     journal = {Czechoslovak Mathematical Journal},
     pages = {689--706},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000063},
     zbl = {1080.54500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a15/}
}
TY  - JOUR
AU  - Marcos, J. E.
TI  - A completion of $\mathbb{Z}$ is a field
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 689
EP  - 706
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a15/
LA  - en
ID  - CMJ_2003_53_3_a15
ER  - 
%0 Journal Article
%A Marcos, J. E.
%T A completion of $\mathbb{Z}$ is a field
%J Czechoslovak Mathematical Journal
%D 2003
%P 689-706
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a15/
%G en
%F CMJ_2003_53_3_a15
Marcos, J. E. A completion of $\mathbb{Z}$ is a field. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 689-706. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a15/

[1] V. I.  Arnautov, S. T.  Glavatsky and A. V.  Mikhalev: Introduction to the Theory of Topological Rings and Modules. Marcel Dekker, New York, 1996. | MR

[2] J.  Borsík and R. Frič: Pointwise convergence fails to be strict. Czechoslovak Math.  J. 48(123) (1998), 313–320. | DOI | MR

[3] C.  Chang and H. J.  Keisler: Model Theory, Third Edition. North-Holland, Amsterdam, 1990. | MR

[4] D.  Dikranjan: Convergence groups: sequential compactness and generalizations. In: Eleventh International Conference on Topology, Trieste 1993. Rend. Istit. Mat. Univ. Trieste 25 (1993), 141–173. | MR

[5] R.  Frič: Rational with exotic convergences. Math. Slovaca 39 (1989), 141–147. | MR

[6] R.  Frič: On ring convergences. Riv. Mat. Pura Appl. 11 (1992), 125–138. | MR

[7] R.  Frič: Convergence and numbers. Topology Appl. 70 (1996), 139–146. | DOI | MR

[8] R.  Frič and J.  Gerlits: On the sequential order. Math. Slovaca 42 (1992), 505–512. | MR

[9] R.  Frič and V.  Koutník: Completions for subcategories of convergence rings. In: Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics World Scientific Publishing Co., Singapore, 1989, pp. 195–207. | MR

[10] R.  Frič and V.  Koutník: Sequential convergence spaces: iteration, extension, completion, enlargement. In: Recent Progress in General Topology, M. Hušek (ed.), Elsevier, Amsterdam, 1992, pp. 201–213. | MR

[11] R.  Frič and F.  Zanolin: Coarse sequential convergence in groups, etc. Czechoslovak Math.  J. 40 (115) (1990), 459–467. | MR

[12] R.  Frič and F.  Zanolin: Strict completions of $L^\ast _0$-groups. Czechoslovak Math.  J. 42 (117) (1992), 589–598. | MR

[13] C.  Jensen and H.  Lenzing: Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules. Gordon and Breach Science Publishers, 1989. | MR

[14] K.  Kuratowski: Topology, Vol. I. Academic Press, New York, 1966. | MR | Zbl

[15] J.  Novák: On convergence groups. Czechoslovak Math.  J. 20 (95) (1970), 357–374. | MR

[16] N.  Shell: Topological Fields and Near Valuations. Marcel Dekker, New York, 1990. | MR | Zbl

[17] P.  Simon and F.  Zanolin: A coarse convergence group need not be precompact. Czechoslovak Math.  J. 37 (112) (1987), 480–486. | MR

[18] G.  Tallini: Campi di Galois non standard. In: Conferenze del Seminario di Matematica dell’Universita di Bari 209 (1986), 1–17. | MR

[19] W.  Wiesław: Topological Fields. Marcel Dekker, New York, 1988. | MR