Continuous extendibility of solutions of the third problem for the Laplace equation
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 669-688 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A necessary and sufficient condition for the continuous extendibility of a solution of the third problem for the Laplace equation is given.
A necessary and sufficient condition for the continuous extendibility of a solution of the third problem for the Laplace equation is given.
Classification : 31B10, 35B65, 35J05, 35J25
Keywords: third problem; Laplace equation; continuous extendibility
@article{CMJ_2003_53_3_a14,
     author = {Medkov\'a, Dagmar},
     title = {Continuous extendibility of solutions of the third problem for the {Laplace} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {669--688},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000062},
     zbl = {1080.35009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a14/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - Continuous extendibility of solutions of the third problem for the Laplace equation
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 669
EP  - 688
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a14/
LA  - en
ID  - CMJ_2003_53_3_a14
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T Continuous extendibility of solutions of the third problem for the Laplace equation
%J Czechoslovak Mathematical Journal
%D 2003
%P 669-688
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a14/
%G en
%F CMJ_2003_53_3_a14
Medková, Dagmar. Continuous extendibility of solutions of the third problem for the Laplace equation. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 669-688. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a14/

[1] V.  Anandam and M. A.  Al-Gwaiz: Global representation of harmonic and biharmonic functions. Potential Anal. 6 (1997), 207–214. | DOI | MR

[2] V.  Anandam and M.  Damlakhi: Harmonic singularity at infinity in  $R^n$. Real Anal. Exchange 23 (1997/8), 471–476. | MR

[3] T. S.  Angell, R.  E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. | MR

[4] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152 (In Russian).

[5] L. E.  Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics 128. Cambridge University Press, 2000. | MR

[6] N. V.  Grachev and V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64. | MR

[7] N. V.  Grachev and V. G.  Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden, .

[8] N. V.  Grachev and V. G.  Maz’ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden, .

[9] N. V.  Grachev and V. G.  Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ., Sweden, .

[10] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics 22. John Wiley & Sons, 1969. | MR

[11] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980. | MR

[12] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. | DOI | MR

[13] J. Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308. | MR

[14] N. L.  Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) | MR

[15] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math.  J. 47(122) (1997), 651–679. | DOI | MR

[16] D.  Medková: Solution of the Robin problem for the Laplace equation. Appl. Math. 43 (1998), 133–155. | DOI | MR

[17] D.  Medková: Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48(123) (1998), 768–784. | DOI | MR

[18] D.  Medková: Continuous extendibility of solutions of the Neumann problem for the Laplace equation. Czechoslovak Math.  J 53(128) (2003), 377–395. | DOI | MR

[19] J.  Nečas: Les méthodes directes en théorie des équations élliptiques. Academia, Prague, 1967. | MR

[20] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. | MR | Zbl

[21] I.  Netuka: Generalized Robin problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 312–324. | MR | Zbl

[22] I.  Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 462–489. | MR | Zbl

[23] I.  Netuka: The third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 554–580. | MR | Zbl

[24] I.  Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslovak Math.  J. 25(100) (1975), 309–316. | MR | Zbl

[25] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Appl. Anal. 45 (1992), 1–4, 135–177. | DOI | MR

[26] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum. Appl. Anal. 56 (1995), 109–115. | DOI | MR | Zbl

[27] G. E.  Shilov: Mathematical analysis. Second special course. Nauka, Moskva, 1965. (Russian) | MR

[28] Ch. G.  Simader and H.  Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series 360, Addison Wesley Longman Inc., 1996. | MR

[29] M.  Schechter: Principles of Functional Analysis. Academic press, New York-London, 1973. | MR

[30] W. P.  Ziemer: Weakly Differentiable Functions. Springer Verlag, 1989. | MR | Zbl