Keywords: $MV$-algebra; archimedean $MV$-algebra; completeness; singular $MV$-algebra; higher degrees of distributivity
@article{CMJ_2003_53_3_a12,
author = {Jakub{\'\i}k, J\'an},
title = {Higher degrees of distributivity in $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {641--653},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000060},
zbl = {1080.06014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a12/}
}
Jakubík, Ján. Higher degrees of distributivity in $MV$-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 641-653. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a12/
[1] D. Byrd and J. T. Lloyd: Closed subgroups and complete distributivity in lattice-ordered groups. Math. Z. 101 (1967), 123–130. | DOI | MR
[2] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol. 7. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[3] P. Conrad: The relationship between the radical of a lattice ordered group and complete distributivity. Pacific J. Math. 14 (1964), 494–499. | DOI | MR | Zbl
[4] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[5] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl
[6] J. Jakubík: Higher degrees of distributivity in lattices and lattice ordered groups. Czechoslovak Math. J. 18 (1968), 356–376. | MR
[7] J. Jakubík: Distributivity in lattice ordered groups. Czechoslovak Math. J. 22 (1972), 108–125. | MR
[8] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
[9] J. Jakubík: On complete $MV$-algebras. Czechoslovak Math. J. 45 (1995), 473–480. | MR
[10] J. Jakubík: On archimedean $MV$-algebras. Czechoslovak Math. J. 48 (1998), 575–582. | DOI | MR
[11] J. Jakubík: Complete generators and maximal completions of $MV$-algebras. Czechoslovak Math. J. 48 (1998), 597–608. | DOI | MR
[12] J. T. Lloyd: Complete distributivity in certain infinite permutation groups. Michigan Math. J. 14 (1967), 393–400. | DOI | MR | Zbl
[13] R. S. Pierce: Distributivity in Boolean algebras. Pacific J. Math. 7 (1957), 983–992. | DOI | MR | Zbl
[14] R. Sikorski: Boolean Algebras, Second Edition. Springer Verlag, Berlin, 1964. | MR
[15] F. Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400–424. | MR
[16] E. C. Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334–346. | DOI | MR | Zbl
[17] E. C. Weinberg: Completely distributive lattice ordered groups. Pacific J. Math. 12 (1962), 1131–1148. | DOI | MR | Zbl