Higher degrees of distributivity in $MV$-algebras
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 641-653 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with the of an $MV$-algebra $\mathcal A$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal A$ is singular and $(\alpha,2)$-distributive, then it is . We show that if $\mathcal A$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity.
In this paper we deal with the of an $MV$-algebra $\mathcal A$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal A$ is singular and $(\alpha,2)$-distributive, then it is . We show that if $\mathcal A$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity.
Classification : 06D10, 06D35, 06F20
Keywords: $MV$-algebra; archimedean $MV$-algebra; completeness; singular $MV$-algebra; higher degrees of distributivity
@article{CMJ_2003_53_3_a12,
     author = {Jakub{\'\i}k, J\'an},
     title = {Higher degrees of distributivity in $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {641--653},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000060},
     zbl = {1080.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a12/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Higher degrees of distributivity in $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 641
EP  - 653
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a12/
LA  - en
ID  - CMJ_2003_53_3_a12
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Higher degrees of distributivity in $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2003
%P 641-653
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a12/
%G en
%F CMJ_2003_53_3_a12
Jakubík, Ján. Higher degrees of distributivity in $MV$-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 641-653. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a12/

[1] D.  Byrd and J. T.  Lloyd: Closed subgroups and complete distributivity in lattice-ordered groups. Math. Z. 101 (1967), 123–130. | DOI | MR

[2] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol.  7. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[3] P.  Conrad: The relationship between the radical of a lattice ordered group and complete distributivity. Pacific J.  Math. 14 (1964), 494–499. | DOI | MR | Zbl

[4] P.  Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[5] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl

[6] J.  Jakubík: Higher degrees of distributivity in lattices and lattice ordered groups. Czechoslovak Math.  J. 18 (1968), 356–376. | MR

[7] J.  Jakubík: Distributivity in lattice ordered groups. Czechoslovak Math.  J. 22 (1972), 108–125. | MR

[8] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44 (1994), 725–739.

[9] J.  Jakubík: On complete $MV$-algebras. Czechoslovak Math.  J. 45 (1995), 473–480. | MR

[10] J.  Jakubík: On archimedean $MV$-algebras. Czechoslovak Math.  J. 48 (1998), 575–582. | DOI | MR

[11] J.  Jakubík: Complete generators and maximal completions of $MV$-algebras. Czechoslovak Math.  J. 48 (1998), 597–608. | DOI | MR

[12] J. T.  Lloyd: Complete distributivity in certain infinite permutation groups. Michigan Math.  J. 14 (1967), 393–400. | DOI | MR | Zbl

[13] R. S.  Pierce: Distributivity in Boolean algebras. Pacific J.  Math. 7 (1957), 983–992. | DOI | MR | Zbl

[14] R.  Sikorski: Boolean Algebras, Second Edition. Springer Verlag, Berlin, 1964. | MR

[15] F.  Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math.  J. 10 (1960), 400–424. | MR

[16] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334–346. | DOI | MR | Zbl

[17] E. C.  Weinberg: Completely distributive lattice ordered groups. Pacific J.  Math. 12 (1962), 1131–1148. | DOI | MR | Zbl