Subdirectly irreducible MV-algebras
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 631-639 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.
In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.
Classification : 03G20, 03G25, 06D25, 06D30, 06D35, 06F15, 06F35
@article{CMJ_2003_53_3_a11,
     author = {Gait\'an, Hernando},
     title = {Subdirectly irreducible {MV-algebras}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {631--639},
     year = {2003},
     volume = {53},
     number = {3},
     mrnumber = {2000059},
     zbl = {1080.06013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a11/}
}
TY  - JOUR
AU  - Gaitán, Hernando
TI  - Subdirectly irreducible MV-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 631
EP  - 639
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a11/
LA  - en
ID  - CMJ_2003_53_3_a11
ER  - 
%0 Journal Article
%A Gaitán, Hernando
%T Subdirectly irreducible MV-algebras
%J Czechoslovak Mathematical Journal
%D 2003
%P 631-639
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a11/
%G en
%F CMJ_2003_53_3_a11
Gaitán, Hernando. Subdirectly irreducible MV-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 631-639. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a11/

[1] W. J.  Blok and D. Pigozzi: On the congruence extension property. Algebra Universalis 38 (1997), 391–394. | DOI | MR

[2] S.  Burris and H. P.  Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. | MR

[3] J.  Czelakowski and W.  Dziobiak: The parametrized local deduction theorem for quasivarieties of algebras and its applications. Algebra Universalis 35 (1996), 713–419. | DOI | MR

[4] C. C.  Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl

[5] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebras of Łukasiewicz Logics, Second Edition. Editions CLE. State University of Campinas, Campinas, S. P. Brazil, 1995.

[6] A.  Dinola and A.  Lettieri: Equational characterization of all varieties of MV-algebras. J.  Algebra 221 (1999), 463–474. | DOI | MR

[7] A.  Dinola, R.  Grigolia and G.  Panti: Finitely generated free MV-algebras and their automorphism groups. Studia Logica 61 (1998), 65–78. | DOI | MR

[8] M.  Font, A. J.  Rogriguez and A.  Torrens: Wajsberg algebras. Stochastica (1984), 5–31. | MR

[9] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl

[10] H.  Gaitán: Quasivarieties of Wajsberg algebras. J. Non-Classical Logic 8 (1991), 79–101. | MR

[11] H.  Gaitán: The number simple of bounded commoutative BCK-chains with one generator. Math. Japon. 38 (1993), 483–486. | MR

[12] D.  Mundici: A Short Introduction to the Algebras of Many-Valued Logic. Monograph.

[13] D.  Mundici: MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japon. 31 (1986), 889–894. | MR | Zbl

[14] A.  Romanowska: Commutative BCK-chains with one generator. Math. Japon. 30 (1985), 663–670. | MR | Zbl

[15] A.  Romanowska and T.  Traczyk: On the structure of commutative BCK-chains. Math. Japon. 26 (1981), 433–442. | MR

[16] A.  Romanowska and T.  Traczyk: Commutative BCK-algebras. Subdirectly irreducible algebras and varieties. Math. Japon. 27 (1982), 35–48. | MR

[17] T.  Traczyk: Free bounded commutative BCK-algebras with one free generator. Demonstratio Mathemetica XVI (1983), 1049–1056. | MR