@article{CMJ_2003_53_3_a11,
author = {Gait\'an, Hernando},
title = {Subdirectly irreducible {MV-algebras}},
journal = {Czechoslovak Mathematical Journal},
pages = {631--639},
year = {2003},
volume = {53},
number = {3},
mrnumber = {2000059},
zbl = {1080.06013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a11/}
}
Gaitán, Hernando. Subdirectly irreducible MV-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 631-639. http://geodesic.mathdoc.fr/item/CMJ_2003_53_3_a11/
[1] W. J. Blok and D. Pigozzi: On the congruence extension property. Algebra Universalis 38 (1997), 391–394. | DOI | MR
[2] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. | MR
[3] J. Czelakowski and W. Dziobiak: The parametrized local deduction theorem for quasivarieties of algebras and its applications. Algebra Universalis 35 (1996), 713–419. | DOI | MR
[4] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl
[5] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebras of Łukasiewicz Logics, Second Edition. Editions CLE. State University of Campinas, Campinas, S. P. Brazil, 1995.
[6] A. Dinola and A. Lettieri: Equational characterization of all varieties of MV-algebras. J. Algebra 221 (1999), 463–474. | DOI | MR
[7] A. Dinola, R. Grigolia and G. Panti: Finitely generated free MV-algebras and their automorphism groups. Studia Logica 61 (1998), 65–78. | DOI | MR
[8] M. Font, A. J. Rogriguez and A. Torrens: Wajsberg algebras. Stochastica (1984), 5–31. | MR
[9] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl
[10] H. Gaitán: Quasivarieties of Wajsberg algebras. J. Non-Classical Logic 8 (1991), 79–101. | MR
[11] H. Gaitán: The number simple of bounded commoutative BCK-chains with one generator. Math. Japon. 38 (1993), 483–486. | MR
[12] D. Mundici: A Short Introduction to the Algebras of Many-Valued Logic. Monograph.
[13] D. Mundici: MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japon. 31 (1986), 889–894. | MR | Zbl
[14] A. Romanowska: Commutative BCK-chains with one generator. Math. Japon. 30 (1985), 663–670. | MR | Zbl
[15] A. Romanowska and T. Traczyk: On the structure of commutative BCK-chains. Math. Japon. 26 (1981), 433–442. | MR
[16] A. Romanowska and T. Traczyk: Commutative BCK-algebras. Subdirectly irreducible algebras and varieties. Math. Japon. 27 (1982), 35–48. | MR
[17] T. Traczyk: Free bounded commutative BCK-algebras with one free generator. Demonstratio Mathemetica XVI (1983), 1049–1056. | MR